Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions Handwritten Text Recognition Model/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@

# Handwritten Text Recognition Model

This code creates a Handwritten Text Recognition app using Machine Learning.

The app provides two main functionalities

1. Draw: Users can draw on a canvas, and the app will detect and display any text from the drawing.
2. Upload Image: Users can upload an image, and the app will detect and display any text present in the uploaded image.


## Screenshots

![App Screenshot](results/OP5.png)
![App Screenshot](results/OP7.png)
![App Screenshot](results/OP2.png)




## Tech Stack

**Languages:** Python

**Libraries:** easyocr, opencv, numpy, scipy etc

**Framework:** Streamlit


## Run Locally

Install dependencies

```bash
pip install -r requirements.txt
```

Start the server

```bash
streamlit run app.py
```


81 changes: 81 additions & 0 deletions Handwritten Text Recognition Model/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import cv2
import easyocr
import numpy as np
from PIL import Image
import io

def detect_text(image):
reader = easyocr.Reader(['en'], gpu=False)
text_ = reader.readtext(np.array(image))

img = np.array(image)

for t_, t in enumerate(text_):
bbox, text, score = t
cv2.rectangle(img, tuple(map(int, bbox[0])), tuple(map(int, bbox[2])), (0, 255, 0), 2)
cv2.putText(img, text, tuple(map(int, bbox[0])), cv2.FONT_HERSHEY_TRIPLEX, 0.75, (255, 0, 0), 1)

return img, text_

st.title("HandWritten Text Recognition")

tab1, tab2 = st.tabs(["Draw", "Upload Image"])

with tab1:
# Create a canvas component
canvas_result = st_canvas(
stroke_width=3,
stroke_color="#000000",
background_color="#ffffff",
height=400,
width=600,
drawing_mode="freedraw",
key="canvas",
)

# Detect text on drawn image
if st.button("Detect"):
if canvas_result.image_data is not None:
img = Image.fromarray(canvas_result.image_data.astype('uint8'), 'RGBA')
img = img.convert('RGB')
st.image(img, caption='Drawn Image.', use_column_width=True)

st.write("Processing the image...")
with st.spinner('Detecting text...'):
processed_image, text_ = detect_text(np.array(img))

st.image(processed_image, caption='Processed Image.', use_column_width=True)

st.write("Detected Text:")
for _, text, score in text_:
st.write(f"Text: **{text}** ")
processed_image_pil = Image.fromarray(processed_image)
buf = io.BytesIO()
processed_image_pil.save(buf, format="PNG")

else:
st.write("Please draw something on the canvas first.")

with tab2:
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)

if st.button("Detect Text"):
st.write("Processing the image...")
with st.spinner('Detecting text...'):
processed_image, text_ = detect_text(np.array(image))

st.image(processed_image, caption='Processed Image.', use_column_width=True)

st.write("Detected Text:")
for _, text, score in text_:
st.write(f"Text: **{text}** ")

processed_image_pil = Image.fromarray(processed_image)
buf = io.BytesIO()
processed_image_pil.save(buf, format="PNG")

13 changes: 13 additions & 0 deletions Handwritten Text Recognition Model/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
easyocr==1.7.1
googletrans==4.0.0rc1
imutils==0.5.4
langdetect==1.0.9
numpy==2.1.2
opencv_contrib_python==4.10.0.84
opencv_python==4.10.0.82
opencv_python_headless==4.10.0.84
Pillow==11.0.0
scipy==1.11.4
streamlit==1.30.0
streamlit==1.36.0
streamlit_drawable_canvas==0.9.3
Loading