Skip to content

Commit 266db7e

Browse files
committed
Rename Section 3: Memory Systems for Context Engineering with updated notebook names
Section directory renamed: - section-3-memory-architecture → section-3-memory-systems-for-context-engineering Notebooks renamed: - 01_memory_fundamentals_and_integration.ipynb → 01_working_and_longterm_memory.ipynb - 02_memory_enhanced_rag_and_agents.ipynb → 02_combining_memory_with_retrieved_context.ipynb - 03_memory_management_long_conversations.ipynb → 03_manage_long_conversations_with_compression_strategies.ipynb Notebook titles updated: - 'Memory Architecture - From Stateless RAG to Stateful Conversations' → 'Working and Long-Term Memory' - 'Memory-Enhanced RAG and Agents' → 'Combining Memory with Retrieved Context' - 'Memory Management - Handling Long Conversations' → 'Managing Long Conversations with Compression Strategies' Updated all references across: - README.md (section title, directory path, learning path) - COURSE_SUMMARY.md (section title, notebook names, glossary) - notebooks/README.md (section title, notebook names) - notebooks/SETUP_GUIDE.md (section reference) - notebooks/section-1-context-engineering-foundations/02_context_assembly_strategies.ipynb (course outline) - notebooks/section-2-retrieved-context-engineering/01_engineering_retrieved_context_with_rag.ipynb (next steps) - notebooks/section-2-retrieved-context-engineering/README.md (next steps) - notebooks/section-3-memory-systems-for-context-engineering/README.md (section title, notebook references) - notebooks/section-3-memory-systems-for-context-engineering/01_working_and_longterm_memory.ipynb (internal links) - notebooks/section-3-memory-systems-for-context-engineering/03_manage_long_conversations_with_compression_strategies.ipynb (completion message) - notebooks/section-4-tool-selection/02_redis_university_course_advisor_agent.ipynb (cross-references) - notebooks/section-4-tool-selection/02_redis_university_course_advisor_agent_with_compression.ipynb (cross-references) Changes emphasize memory as implementation technique for context engineering: - Section 1: Context Engineering Foundations (framework) - Section 2: Retrieved Context Engineering (RAG/vector search) - Section 3: Memory Systems for Context Engineering (conversation/user context) - Creates clear progression through context types and implementation techniques
1 parent a5ddcb2 commit 266db7e

15 files changed

+36
-36
lines changed

python-recipes/context-engineering/COURSE_SUMMARY.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -95,14 +95,14 @@ None (pure theory and conceptual foundation)
9595

9696
---
9797

98-
### **Section 3: Memory Architecture** (4-5 hours)
98+
### **Section 3: Memory Systems for Context Engineering** (4-5 hours)
9999

100100
**Notebooks**: 3 | **Prerequisites**: Sections 1-2
101101

102102
#### Notebooks
103-
1. **Memory Fundamentals and Integration** - Working memory, long-term memory, Agent Memory Server
104-
2. **Memory-Enhanced RAG and Agents** - Combining memory with RAG, building stateful agents
105-
3. **Working Memory Compression** - Compression strategies for long conversations
103+
1. **Working and Long-Term Memory** - Working memory, long-term memory, Agent Memory Server
104+
2. **Combining Memory with Retrieved Context** - Combining memory with RAG, building stateful agents
105+
3. **Managing Long Conversations with Compression Strategies** - Compression strategies for long conversations
106106

107107
#### Learning Outcomes
108108
- ✅ Implement working memory (session-scoped) and long-term memory (cross-session)
@@ -391,7 +391,7 @@ The `redis-context-course` package provides production-ready components used thr
391391
- **Redis Vector Search**: Using Redis for vector storage and retrieval
392392
- **Hybrid Search**: Combining keyword and semantic search
393393

394-
### Memory Architecture
394+
### Memory Systems for Context Engineering
395395
- **Dual Memory System**: Working memory (session) + Long-term memory (cross-session)
396396
- **Memory Types**: Semantic (facts), Episodic (events), Message (conversations)
397397
- **Memory Extraction Strategies**: Discrete, Summary, Preferences, Custom
@@ -649,7 +649,7 @@ from redis_context_course import (
649649

650650
#### For Beginners (3-4 weeks, 6-8 hours/week)
651651
1. **Week 1**: Complete Section 1 (Foundations) and Section 2 (RAG)
652-
2. **Week 2**: Work through Section 3 (Memory Architecture)
652+
2. **Week 2**: Work through Section 3 (Memory Systems for Context Engineering)
653653
3. **Week 3**: Build agents in Section 4 (Tool Selection & LangGraph)
654654
4. **Week 4**: Optimize in Section 5 (Production)
655655

python-recipes/context-engineering/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ Build a RAG system using Redis and RedisVL for semantic course search.
100100

101101
---
102102

103-
### **Section 3: Memory Architecture** (4-5 hours)
103+
### **Section 3: Memory Systems for Context Engineering** (4-5 hours)
104104
**3 notebooks** | **Prerequisites**: Sections 1-2
105105

106106
Master dual memory systems with Agent Memory Server, including extraction and compression strategies.
@@ -194,7 +194,7 @@ context-engineering/
194194
│ ├── REFERENCE_AGENT_USAGE_ANALYSIS.md # Component usage analysis
195195
│ ├── section-1-context-engineering-foundations/ # Section 1 notebooks
196196
│ ├── section-2-retrieved-context-engineering/ # Section 2 notebooks
197-
│ ├── section-3-memory-architecture/ # Section 3 notebooks
197+
│ ├── section-3-memory-systems-for-context-engineering/ # Section 3 notebooks
198198
│ ├── section-4-tool-selection/ # Section 4 notebooks
199199
│ └── section-5-optimization-production/ # Section 5 notebooks
200200
@@ -455,7 +455,7 @@ docker-compose down -v
455455
**Timeline**: 3-4 weeks (6-8 hours/week)
456456

457457
1. **Week 1**: Complete Section 1 (Foundations) and Section 2 (RAG)
458-
2. **Week 2**: Work through Section 3 (Memory Architecture)
458+
2. **Week 2**: Work through Section 3 (Memory Systems for Context Engineering)
459459
3. **Week 3**: Build agents in Section 4 (Tool Selection & LangGraph)
460460
4. **Week 4**: Optimize in Section 5 (Production)
461461

@@ -496,7 +496,7 @@ docker-compose down -v
496496
- Build RAG systems with Redis and RedisVL
497497
- Create course recommendation engines
498498

499-
**Section 3: Memory Architecture**
499+
**Section 3: Memory Systems for Context Engineering**
500500
- Master dual memory systems (working + long-term)
501501
- Implement memory extraction strategies
502502
- Apply working memory compression techniques

python-recipes/context-engineering/notebooks/README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ Basic Concepts → RAG Agent → Memory Agent → Multi-Tool Agen
128128
- `CourseManager` - Course search and recommendations
129129
- `redis_config` - Redis configuration and connection
130130

131-
### 🧠 **Section 3: Memory Architecture**
131+
### 🧠 **Section 3: Memory Systems for Context Engineering**
132132
**Goal**: Master memory management with Agent Memory Server
133133
**Duration**: ~4-5 hours
134134
**Prerequisites**: Section 2 completed, Agent Memory Server running
@@ -147,9 +147,9 @@ Basic Concepts → RAG Agent → Memory Agent → Multi-Tool Agen
147147
- Session management and cross-session persistence
148148

149149
**Notebooks**:
150-
1. `01_memory_fundamentals_and_integration.ipynb` - Memory basics and Agent Memory Server integration
151-
2. `02_memory_enhanced_rag_and_agents.ipynb` - Memory extraction strategies in practice
152-
3. `03_memory_management_long_conversations.ipynb` - Compression strategies for long conversations
150+
1. `01_working_and_longterm_memory.ipynb` - Memory basics and Agent Memory Server integration
151+
2. `02_combining_memory_with_retrieved_context.ipynb` - Memory extraction strategies in practice
152+
3. `03_manage_long_conversations_with_compression_strategies.ipynb` - Compression strategies for long conversations
153153

154154
**Reference Agent Components Used**:
155155
- `redis_config` - Redis configuration
@@ -319,7 +319,7 @@ Students can:
319319
- ✅ Generate and ingest course data into Redis
320320
- ✅ Create course recommendation systems with semantic search
321321

322-
### **After Section 3: Memory Architecture**
322+
### **After Section 3: Memory Systems for Context Engineering**
323323
Students can:
324324
- ✅ Integrate Agent Memory Server with AI agents
325325
- ✅ Implement dual memory systems (working + long-term)

python-recipes/context-engineering/notebooks/SETUP_GUIDE.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -156,7 +156,7 @@ Once setup is complete:
156156

157157
## 🔗 Section-Specific Requirements
158158

159-
### Section 3 & 4: Memory Architecture & Agents
159+
### Section 3 & 4: Memory Systems & Agents
160160
- ✅ Redis (for vector storage)
161161
- ✅ Agent Memory Server (for memory management)
162162
- ✅ OpenAI API key

python-recipes/context-engineering/notebooks/section-1-context-engineering-foundations/02_context_assembly_strategies.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1561,7 +1561,7 @@
15611561
"- Hybrid search approaches\n",
15621562
"- Optimizing retrieval performance\n",
15631563
"\n",
1564-
"**Section 3: Agent Memory Architecture**\n",
1564+
"**Section 3: Memory Systems for Context Engineering**\n",
15651565
"- Long-term memory systems with Redis Agent Memory Server\n",
15661566
"- Working memory vs. long-term memory patterns\n",
15671567
"- Memory summarization and compression\n",

python-recipes/context-engineering/notebooks/section-2-retrieved-context-engineering/01_engineering_retrieved_context_with_rag.ipynb

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
"- Combine retrieved context with user and system context\n",
3434
"\n",
3535
"**Foundation for Advanced Topics:**\n",
36-
"- This RAG system becomes the base for Section 3 (Memory Architecture)\n",
36+
"- This RAG system becomes the base for Section 3 (Memory Systems for Context Engineering)\n",
3737
"- You'll add LangGraph state management and tools in later sections\n",
3838
"- Focus here is purely on retrieval → context assembly → generation\n",
3939
"\n",
@@ -1905,7 +1905,7 @@
19051905
"source": [
19061906
"## 🚀 What's Next?\n",
19071907
"\n",
1908-
"### 🧠 Section 3: Memory Architecture\n",
1908+
"### 🧠 Section 3: Memory Systems for Context Engineering\n",
19091909
"\n",
19101910
"In this section, you built a RAG system that retrieves relevant information for each query. But there's a problem: **it doesn't remember previous conversations**.\n",
19111911
"\n",
@@ -1930,7 +1930,7 @@
19301930
"\n",
19311931
"Section 2: RAG (Retrieved Context) ← You are here\n",
19321932
"\n",
1933-
"Section 3: Memory Architecture (Conversation Context)\n",
1933+
"Section 3: Memory Systems for Context Engineering (Conversation Context)\n",
19341934
"\n",
19351935
"Section 4: Tool Use and Agents (Complete System)\n",
19361936
"```\n",

python-recipes/context-engineering/notebooks/section-2-retrieved-context-engineering/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -139,7 +139,7 @@ By the end of this section, you'll have:
139139
## Next Steps
140140

141141
After completing this section:
142-
1. **Continue to Section 3: Memory Architecture** to add sophisticated Redis-based memory
142+
1. **Continue to Section 3: Memory Systems for Context Engineering** to add sophisticated Redis-based memory
143143
2. **Review your RAG agent** and identify areas for improvement
144144
3. **Experiment with different queries** to understand system behavior
145145
4. **Consider real-world applications** of RAG in your domain

python-recipes/context-engineering/notebooks/section-3-memory-architecture/01_memory_fundamentals_and_integration.ipynb renamed to python-recipes/context-engineering/notebooks/section-3-memory-systems-for-context-engineering/01_working_and_longterm_memory.ipynb

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
"source": [
88
"![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n",
99
"\n",
10-
"# 🧠 Section 3: Memory Architecture - From Stateless RAG to Stateful Conversations\n",
10+
"# 🧠 Working and Long-Term Memory\n",
1111
"\n",
1212
"**⏱️ Estimated Time:** 45-60 minutes\n",
1313
"\n",
@@ -3110,7 +3110,7 @@
31103110
"\n",
31113111
"You've learned the fundamentals of memory architecture! Now it's time to put it all together.\n",
31123112
"\n",
3113-
"### **Next Notebook: `02_memory_enhanced_rag_and_agents.ipynb`**\n",
3113+
"### **Next Notebook: `02_combining_memory_with_retrieved_context.ipynb`**\n",
31143114
"\n",
31153115
"In the next notebook, you'll:\n",
31163116
"\n",
@@ -3129,7 +3129,7 @@
31293129
"- Learn how to build production-ready agents\n",
31303130
"- Prepare for Section 4 (adding tools like enrollment, scheduling)\n",
31313131
"\n",
3132-
"**📚 Continue to:** `02_memory_enhanced_rag_and_agents.ipynb`\n",
3132+
"**📚 Continue to:** `02_combining_memory_with_retrieved_context.ipynb`\n",
31333133
"\n",
31343134
"## ⏰ Memory Lifecycle & Persistence\n",
31353135
"\n",
@@ -3733,7 +3733,7 @@
37333733
"source": [
37343734
"### Hands-On Demo Coming in Notebook 2\n",
37353735
"\n",
3736-
"**In the next notebook** (`02_memory_enhanced_rag_and_agents.ipynb`), we'll:\n",
3736+
"**In the next notebook** (`02_combining_memory_with_retrieved_context.ipynb`), we'll:\n",
37373737
"\n",
37383738
"1. **Demonstrate** the difference between discrete and summary strategies\n",
37393739
"2. **Show** the same conversation processed with both strategies\n",
@@ -3803,7 +3803,7 @@
38033803
"\n",
38043804
"### **Next Notebook: Memory-Enhanced RAG and Agents**\n",
38053805
"\n",
3806-
"**📚 Continue to: `02_memory_enhanced_rag_and_agents.ipynb`**\n",
3806+
"**📚 Continue to: `02_combining_memory_with_retrieved_context.ipynb`**\n",
38073807
"\n",
38083808
"In the next notebook, you'll:\n",
38093809
"\n",

python-recipes/context-engineering/notebooks/section-3-memory-architecture/02_memory_enhanced_rag_and_agents.ipynb renamed to python-recipes/context-engineering/notebooks/section-3-memory-systems-for-context-engineering/02_combining_memory_with_retrieved_context.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
"source": [
88
"![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n",
99
"\n",
10-
"# 🔗 Section 3: Memory-Enhanced RAG and Agents\n",
10+
"# 🔗 Combining Memory with Retrieved Context\n",
1111
"\n",
1212
"**⏱️ Estimated Time:** 60-75 minutes\n",
1313
"\n",

python-recipes/context-engineering/notebooks/section-3-memory-architecture/03_memory_management_long_conversations.ipynb renamed to python-recipes/context-engineering/notebooks/section-3-memory-systems-for-context-engineering/03_manage_long_conversations_with_compression_strategies.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
"source": [
88
"![Redis](https://redis.io/wp-content/uploads/2024/04/Logotype.svg?auto=webp&quality=85,75&width=120)\n",
99
"\n",
10-
"# 🧠 Section 3, Notebook 3: Memory Management - Handling Long Conversations\n",
10+
"# 🧠 Managing Long Conversations with Compression Strategies\n",
1111
"\n",
1212
"**⏱️ Estimated Time:** 50-60 minutes\n",
1313
"\n",
@@ -3647,7 +3647,7 @@
36473647
"\n",
36483648
"**Redis University - Context Engineering Course**\n",
36493649
"\n",
3650-
"**🎉 Congratulations!** You've completed Section 3: Memory Architecture!\n",
3650+
"**🎉 Congratulations!** You've completed Section 3: Memory Systems for Context Engineering!\n",
36513651
"\n",
36523652
"You now understand how to:\n",
36533653
"- Build memory systems for AI agents\n",

0 commit comments

Comments
 (0)