Skip to content

Commit 88fe66d

Browse files
committed
Apply misspelling fix
1 parent 3c32f10 commit 88fe66d

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

content/develop/ai/search-and-query/vectors.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -133,7 +133,7 @@ In the example above, an index named `documents` is created over hashes with the
133133

134134
Scalable Vector Search (SVS) is an Intel project in which a new vector search library, VAMANA graph index, was created. SVS-VAMANA supports highly accurate compressed vector indexes. You can read more about the project [here](https://intel.github.io/ScalableVectorSearch/intro.html). Support for `SVS-VAMANA` indexing was added in Redis 8.2.
135135

136-
Choose the `SYS-VAMANA` index type when you need vector search
136+
Choose the `SVS-VAMANA` index type when you need vector search
137137

138138
- on billions of high-dimensional vectors,
139139
- at high accuracy and state-of-the-art speed,
@@ -429,7 +429,7 @@ Optional runtime parameters for HNSW indexes are:
429429

430430
**SVS-VAMANA**
431431

432-
Optional runtime parameters for SYS-VAMANA indexes are:
432+
Optional runtime parameters for SVS-VAMANA indexes are:
433433

434434
| Parameter | Description | Default value |
435435
|:----------|:------------|:--------------|

0 commit comments

Comments
 (0)