This repository contains a LinkedIn MCP based on Restack.
- Docker (for running Restack)
- Python 3.10 or higher
- A Restack account (for cloud deployment)
- API keys for BrightData and/or Phantombuster
Create a .env file in the root of the project. All required environment variables are listed in the env.example file.
To start Restack locally, use the following Docker command:
docker run -d --pull always --name restack -p 5233:5233 -p 6233:6233 -p 7233:7233 -p 9233:9233 -p 10233:10233 ghcr.io/restackio/restack:mainCreate and activate a virtual environment.
If using uv:
uv venv && source .venv/bin/activateIf using pip:
python -m venv .venv && source .venv/bin/activateIf using uv:
uv syncIf using pip:
pip install -r requirements.txt
pip install -e .This will start the Restack services and connect to the engine.
If using uv:
uv run devIf using pip:
python -c "from src.services import watch_services; watch_services()"This MCP provides several workflows to interact with LinkedIn:
GetLinkedinProfileWorkflowBrightdata: Get a LinkedIn profile.GetLinkedinProfilePostsWorkflowBrightdata: Get posts from a LinkedIn profile.GetLinkedinProfileReactionsWorkflowBrightdata: Get reactions on posts from a LinkedIn profile.
GetLinkedinProfileWorkflowPhantombuster: Get a LinkedIn profile.GetLinkedinProfilePostsWorkflowPhantombuster: Get posts from a LinkedIn profile.GetLinkedinProfileReactionsWorkflowPhantombuster: Get reactions on posts from a LinkedIn profile.SaveLinkedinLeadWorkflowPhantombuster: Save a LinkedIn profile as a lead.
CreatePostOnLinkedinWorkflow: Create a post on LinkedIn.
You can trigger these workflows from the Restack UI or API.
To deploy the application on Restack, you can create an account at https://console.restack.io and follow the documentation to deploy your agent.