|
| 1 | +# See LICENSE for license details. |
| 2 | + |
| 3 | +#***************************************************************************** |
| 4 | +# pmpaddr.S |
| 5 | +#----------------------------------------------------------------------------- |
| 6 | +# |
| 7 | +# Test edge cases around the pmpaddr[G-1] bit which sometimes reads as zero |
| 8 | +# but is always writable and retains its state. Also test CSRC and CSRS |
| 9 | +# modifications to other bits result in a correct read-modify-write. |
| 10 | +# |
| 11 | +# This test auto-detects G but assumes PMP is available. It supports a |
| 12 | +# maximum G of XLEN-1. There's no minimum but if G is 0 then the G-1 bit |
| 13 | +# does not exist and this test trivially passes. |
| 14 | + |
| 15 | +#include "riscv_test.h" |
| 16 | +#include "test_macros.h" |
| 17 | + |
| 18 | +RVTEST_RV64M |
| 19 | +RVTEST_CODE_BEGIN |
| 20 | + |
| 21 | + li TESTNUM, 1 |
| 22 | + |
| 23 | + # Software may determine the PMP granularity by writing zero to pmpcfg0, |
| 24 | + # then writing all ones to pmpaddr0, then reading back pmpaddr0. |
| 25 | + # If G is the index of the least-significant bit set, the PMP granularity |
| 26 | + # is 2^(G+2) bytes. |
| 27 | + csrw pmpcfg0, zero |
| 28 | + li t0, -1 |
| 29 | + csrw pmpaddr0, t0 |
| 30 | + csrr t0, pmpaddr0 |
| 31 | + |
| 32 | + # Isolate the least significant bit. |
| 33 | + |
| 34 | + neg t1, t0 |
| 35 | + and a7, t0, t1 |
| 36 | + |
| 37 | + # a7 now contains only the lowest 1 that was set in pmpaddr0. |
| 38 | + |
| 39 | + # If a7 is 0 then G is >=XLEN which this test does not support. |
| 40 | + beqz a7, fail |
| 41 | + # Shift so the G-1 bit is set. |
| 42 | + srl a7, a7, 1 |
| 43 | + # If no bits are set now then G is 0, which trivially passes. |
| 44 | + beqz a7, pass |
| 45 | + |
| 46 | +#define PMPADDR_Gm1_MASK a7 |
| 47 | +#define PMPCFG_A_MASK (0x3 << 3) |
| 48 | + # Ok now we can begin the main test! |
| 49 | + |
| 50 | +# Set pmpaddr0[G-1] to `value` (1 or 0). |
| 51 | +.macro set_pmpaddr_bit value |
| 52 | +.if \value |
| 53 | + csrs pmpaddr0, PMPADDR_Gm1_MASK |
| 54 | +.else |
| 55 | + csrc pmpaddr0, PMPADDR_Gm1_MASK |
| 56 | +.endif |
| 57 | +.endm |
| 58 | + |
| 59 | +# Switch pmpcfg0 to OFF mode so pmpaddr0[G-1] reads as 0. |
| 60 | +.macro set_mode_off |
| 61 | + csrc pmpcfg0, PMPCFG_A_MASK |
| 62 | +.endm |
| 63 | + |
| 64 | +# Switch pmpcfg0 to NAPOT mode so pmpaddr0[G-1] reads normally. |
| 65 | +.macro set_mode_napot |
| 66 | + csrs pmpcfg0, PMPCFG_A_MASK |
| 67 | +.endm |
| 68 | + |
| 69 | +# Check that pmpaddr9[G] is set or unset depending on expected_value. |
| 70 | +.macro check_pmpaddr_bit expected_value |
| 71 | + # Note when gas 2.43 is common we can use \+ instead of \@ which |
| 72 | + # gives more sensible numbers. \@ still works but it gives 4, 6, |
| 73 | + # 8, 10, 15... instead of 0, 1, 2, 3. |
| 74 | + li TESTNUM, (2 + \@) |
| 75 | + csrr t6, pmpaddr0 |
| 76 | + and t6, t6, PMPADDR_Gm1_MASK |
| 77 | +.if \expected_value |
| 78 | + beqz t6, fail |
| 79 | +.else |
| 80 | + bnez t6, fail |
| 81 | +.endif |
| 82 | +.endm |
| 83 | + |
| 84 | +.macro check_pmpaddr_bit_clear |
| 85 | + csrr t6, pmpaddr0 |
| 86 | + and t6, t6, PMPADDR_Gm1_MASK |
| 87 | + bnez t6, fail |
| 88 | +.endm |
| 89 | + |
| 90 | + # Initialise pmpaddr and pmpcfg. |
| 91 | + |
| 92 | + # M bit is writable in NAPOT mode. |
| 93 | + set_mode_napot |
| 94 | + # Clear it, it should read 0. |
| 95 | + set_pmpaddr_bit 0 |
| 96 | + check_pmpaddr_bit 0 |
| 97 | + # Set it, it shouldn't read 0. |
| 98 | + set_pmpaddr_bit 1 |
| 99 | + check_pmpaddr_bit 1 |
| 100 | + # M bit is writable but reads as 0 in OFF mode. |
| 101 | + set_mode_off |
| 102 | + # Should read as 0. |
| 103 | + check_pmpaddr_bit 0 |
| 104 | + # Switch back to NAPOT. The 1 should be readable again. |
| 105 | + set_mode_napot |
| 106 | + check_pmpaddr_bit 1 |
| 107 | + |
| 108 | + # Test writing the bit while it is read-as-zero. |
| 109 | + set_pmpaddr_bit 0 |
| 110 | + set_mode_off |
| 111 | + set_pmpaddr_bit 1 |
| 112 | + set_mode_napot |
| 113 | + check_pmpaddr_bit 1 |
| 114 | + |
| 115 | + # Test modifying a *different* bit while its underlying |
| 116 | + # value is 1 but it reads as 0. Since csrs and csrc are |
| 117 | + # read-modify-write they reads-as value will be written |
| 118 | + # to the underlying value. |
| 119 | + set_mode_off |
| 120 | + # A csrs or csrc from the zero register does not have |
| 121 | + # any side effects. |
| 122 | + csrc pmpaddr0, zero |
| 123 | + csrs pmpaddr0, zero |
| 124 | + set_mode_napot |
| 125 | + check_pmpaddr_bit 1 |
| 126 | + |
| 127 | + set_mode_off |
| 128 | + # Set other bits. This should result in M being cleared |
| 129 | + # since it currently reads as 0. |
| 130 | + not t0, PMPADDR_Gm1_MASK |
| 131 | + csrs pmpaddr0, t0 |
| 132 | + set_mode_napot |
| 133 | + check_pmpaddr_bit 0 |
| 134 | + |
| 135 | + j pass |
| 136 | + |
| 137 | + TEST_PASSFAIL |
| 138 | + |
| 139 | + .align 2 |
| 140 | + .global mtvec_handler |
| 141 | +mtvec_handler: |
| 142 | + # We aren't expecting any exceptions unless PMP is not supported |
| 143 | + # in which case this test is also not supported. There's no |
| 144 | + # way to probe for PMP support so we can't just pass in this case. |
| 145 | + j fail |
| 146 | + |
| 147 | +RVTEST_CODE_END |
| 148 | + |
| 149 | + .data |
| 150 | +RVTEST_DATA_BEGIN |
| 151 | + |
| 152 | + TEST_DATA |
| 153 | + |
| 154 | +RVTEST_DATA_END |
0 commit comments