This repository contains Jupyter notebooks to reproduce the analyses presented in the manuscript "scDenorm: a denormalisation tool for Integrating Single-cell Transcriptomics Data."
- Download the Notebooks: Clone or download this repository from GitHub: scDenorm GitHub Repository or from Zenodo: scDenorm Data.
- Download and install Docker and Jupyter: Follow the instructions for installation: Docker Get Started.
- Download Data:
- Download the data file from Zenodo: scDenorm Data.
- Unzip the downloaded data and place the relevant files into the
scDenorm_reproducibility/datafolder.
- Run Docker Image:
- Ensure Docker is running.
- Load the Docker image directly from the
.tar.gzfile:ordocker load < scdenorm_v0.tar.gztar -xzf scdenorm_v0.tar.gz docker load -i scdenorm_v0.tar
- Run the Docker container with the following command (update the local path accordingly):
docker run --platform linux/amd64 \ -p 8888:8888 \ -v /path/to/scDenorm_reproducibility/data:/app \ scdenorm_v0 \ jupyter lab --ip=0.0.0.0 --no-browser --allow-root
- Note: Ensure to share the project folder with Docker. Go to Docker → Preferences → Resources → File Sharing and add the local project path.
- Open
Fig5.ipynb. - Select Kernel > Change Kernel > Python [conda env: sc].
- Data Import: Copy the data from Zenodo into
scDenorm_reproducibility/data, including:fig5_input.h5adPBMC_before_scDenorm.h5adPBMC_after_scDenorm.h5adPBMC_groundgo.csvPBMC_beforego.csvPBMC_aftergo.csv
- Run the notebook cells in order.
- Open
Fig5_R_goanalysis.ipynb. - Select Kernel > Change Kernel > R [conda env: sc].
- Data Import: Copy the data from Zenodo into
scDenorm_reproducibility/data, including:PBMC_raw_count_b0_deg.csvPBMC_raw_count_b1_deg.csvPBMC_normlized_data_1e3_b1_deg.csv
- Run the notebook cells in order.
The repository includes the following notebooks:
Fig1.ipynb: Analysis for Figure 1Fig2.ipynb: Analysis for Figure 2Fig3.ipynb: Analysis for Figure 3Fig4.ipynb: Analysis for Figure 4Fig5.ipynb: Analysis for Figure 5Fig6.ipynb: Analysis for Figure 6Fig7.ipynb: Analysis for Figure 7
- Python:
- Environment file:
config/environment.yaml - To create a Conda environment using the specifications in the environment.yaml file:
conda env create -f environment.yaml
- Environment file:
- R:
- Installed packages:
config/installed_packages.csv - To install necessary R packages, run the following in the R terminal:
pkg_list <- read.csv("installed_packages.csv", stringsAsFactors = FALSE) for (pkg in pkg_list$Package) { if (!requireNamespace(pkg, quietly = TRUE)) { message(" Installing the package: ", pkg) install.packages(pkg, dependencies = TRUE) } }
- Installed packages:
-
Documentation: https://changebio.github.io/scDenorm
-
Install:
- Using pip:
pip install scDenorm
- Using pip:
-
Usage:
scdenorm data/pbmc3k_norm.h5ad --fout data/pbmc3k_denorm.h5ad
Yin Huang, Anna Vathrakokili Pournara, Ying Ao, Ziliang Huang, Hui Zhang, Yongjian Zhang, Sheng Liu, Alvis Brazma, Irene Papatheodorou, Xinlu Yang, Ming Shi, Zhichao Miao “scDenorm: a denormalisation tool for integrating single-cell transcriptomics data”(Under review)
For any questions or issues, please open an issue in the repository.