Skip to content

rnacentre/scDenorm_reproducibility

 
 

Repository files navigation

scDenorm_reproducibility

Overview

This repository contains Jupyter notebooks to reproduce the analyses presented in the manuscript "scDenorm: a denormalisation tool for Integrating Single-cell Transcriptomics Data."

Tutorial for Running Notebooks

  1. Download the Notebooks: Clone or download this repository from GitHub: scDenorm GitHub Repository or from Zenodo: scDenorm Data.
  2. Download and install Docker and Jupyter: Follow the instructions for installation: Docker Get Started.
  3. Download Data:
    • Download the data file from Zenodo: scDenorm Data.
    • Unzip the downloaded data and place the relevant files into the scDenorm_reproducibility/data folder.
  4. Run Docker Image:
    • Ensure Docker is running.
    • Load the Docker image directly from the .tar.gz file:
      docker load < scdenorm_v0.tar.gz
      or
      tar -xzf scdenorm_v0.tar.gz
      docker load -i scdenorm_v0.tar
    • Run the Docker container with the following command (update the local path accordingly):
      docker run --platform linux/amd64 \
      -p 8888:8888 \
      -v /path/to/scDenorm_reproducibility/data:/app \
      scdenorm_v0 \
      jupyter lab --ip=0.0.0.0 --no-browser --allow-root
    • Note: Ensure to share the project folder with Docker. Go to Docker → Preferences → Resources → File Sharing and add the local project path.

Example running Fig5.ipynb

  1. Open Fig5.ipynb.
  2. Select Kernel > Change Kernel > Python [conda env: sc].
  3. Data Import: Copy the data from Zenodo into scDenorm_reproducibility/data, including:
    • fig5_input.h5ad
    • PBMC_before_scDenorm.h5ad
    • PBMC_after_scDenorm.h5ad
    • PBMC_groundgo.csv
    • PBMC_beforego.csv
    • PBMC_aftergo.csv
  4. Run the notebook cells in order.

Example running Fig5_R_goanalysis.ipynb

  1. Open Fig5_R_goanalysis.ipynb.
  2. Select Kernel > Change Kernel > R [conda env: sc].
  3. Data Import: Copy the data from Zenodo into scDenorm_reproducibility/data, including:
    • PBMC_raw_count_b0_deg.csv
    • PBMC_raw_count_b1_deg.csv
    • PBMC_normlized_data_1e3_b1_deg.csv
  4. Run the notebook cells in order.

Notebooks

The repository includes the following notebooks:

  • Fig1.ipynb: Analysis for Figure 1
  • Fig2.ipynb: Analysis for Figure 2
  • Fig3.ipynb: Analysis for Figure 3
  • Fig4.ipynb: Analysis for Figure 4
  • Fig5.ipynb: Analysis for Figure 5
  • Fig6.ipynb: Analysis for Figure 6
  • Fig7.ipynb: Analysis for Figure 7

Environment Configurations on local computer

  • Python:
    • Environment file: config/environment.yaml
    • To create a Conda environment using the specifications in the environment.yaml file:
      conda env create -f environment.yaml
  • R:
    • Installed packages: config/installed_packages.csv
    • To install necessary R packages, run the following in the R terminal:
      pkg_list <- read.csv("installed_packages.csv", stringsAsFactors = FALSE)
      for (pkg in pkg_list$Package) {
        if (!requireNamespace(pkg, quietly = TRUE)) {
          message(" Installing the package: ", pkg)
          install.packages(pkg, dependencies = TRUE)
        }
      }

How to Use and Install scDenorm

Citation

Yin Huang, Anna Vathrakokili Pournara, Ying Ao, Ziliang Huang, Hui Zhang, Yongjian Zhang, Sheng Liu, Alvis Brazma, Irene Papatheodorou, Xinlu Yang, Ming Shi, Zhichao Miao “scDenorm: a denormalisation tool for integrating single-cell transcriptomics data”(Under review)

For any questions or issues, please open an issue in the repository.

About

Notebooks for reproduce scDenorm's results

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%