Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,393 @@
import logging
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Literal, Optional, Type, Union

import numpy as np
import supervision as sv
from pydantic import ConfigDict, Field

from inference.core import logger
from inference.core.workflows.execution_engine.entities.base import (
OutputDefinition,
VideoMetadata,
WorkflowImageData,
)
from inference.core.workflows.execution_engine.entities.types import (
DICTIONARY_KIND,
FLOAT_KIND,
INSTANCE_SEGMENTATION_PREDICTION_KIND,
INTEGER_KIND,
OBJECT_DETECTION_PREDICTION_KIND,
Selector,
WorkflowImageSelector,
WorkflowParameterSelector,
)
from inference.core.workflows.prototypes.block import (
BlockResult,
WorkflowBlock,
WorkflowBlockManifest,
)

OUTPUT_KEY = "event_log"
DETECTIONS_OUTPUT_KEY = "detections"
MAX_VIDEOS = 100 # Maximum number of video streams to track before evicting oldest


@dataclass
class DetectionEvent:
"""Stores event data for a tracked detection."""

tracker_id: int
class_name: str
first_seen_frame: int
first_seen_timestamp: float
last_seen_frame: int
last_seen_timestamp: float
frame_count: int = 1
logged: bool = False


class BlockManifest(WorkflowBlockManifest):
model_config = ConfigDict(
json_schema_extra={
"name": "Detection Event Log",
"version": "v1",
"short_description": "Tracks detection events over time, logging when objects first appear and persist.",
"long_description": (
"This block maintains a log of detection events from tracked objects. "
"It records when each object was first seen, its class, and the last time it was seen."
"Objects must be seen for a minimum number of frames (frame_threshold) before being logged. "
"Stale events (not seen for stale_frames) are removed during periodic cleanup (every flush_interval frames)."
),
"license": "Apache-2.0",
"block_type": "analytics",
"ui_manifest": {
"section": "analytics",
"icon": "fal fa-list-timeline",
"blockPriority": 3,
},
}
)
type: Literal["roboflow_core/detection_event_log@v1"]

image: WorkflowImageSelector = Field(
description="Reference to the image for video metadata (frame number, timestamp).",
examples=["$inputs.image"],
)

detections: Selector(
kind=[
OBJECT_DETECTION_PREDICTION_KIND,
INSTANCE_SEGMENTATION_PREDICTION_KIND,
]
) = Field(
description="Tracked detections from byte tracker (must have tracker_id).",
examples=["$steps.byte_tracker.tracked_detections"],
)

frame_threshold: Union[int, WorkflowParameterSelector(kind=[INTEGER_KIND])] = Field(
default=30,
description="Number of frames an object must be seen before being logged.",
examples=[5, 10],
ge=1,
)

flush_interval: Union[int, WorkflowParameterSelector(kind=[INTEGER_KIND])] = Field(
default=30,
description="How often (in frames) to run the cleanup operation for stale events.",
examples=[30, 60],
ge=1,
)

stale_frames: Union[int, WorkflowParameterSelector(kind=[INTEGER_KIND])] = Field(
default=300,
description="Remove events that haven't been seen for this many frames.",
examples=[150, 300],
ge=1,
)

reference_timestamp: Optional[
Union[float, WorkflowParameterSelector(kind=[FLOAT_KIND])]
] = Field(
default=None,
description="Unix timestamp when the video started. When provided, absolute timestamps (first_seen_timestamp, last_seen_timestamp) are included in output, calculated as relative time + reference_timestamp.",
examples=[1726570875.0],
)

fallback_fps: Union[float, WorkflowParameterSelector(kind=[FLOAT_KIND])] = Field(
default=1.0,
description="Fallback FPS to use when video metadata does not provide FPS information. Used to calculate relative timestamps.",
examples=[1.0, 30.0],
gt=0,
)

@classmethod
def describe_outputs(cls) -> List[OutputDefinition]:
return [
OutputDefinition(
name=OUTPUT_KEY,
kind=[DICTIONARY_KIND],
),
OutputDefinition(
name=DETECTIONS_OUTPUT_KEY,
kind=[
OBJECT_DETECTION_PREDICTION_KIND,
INSTANCE_SEGMENTATION_PREDICTION_KIND,
],
),
OutputDefinition(
name="total_logged",
kind=[INTEGER_KIND],
),
OutputDefinition(
name="total_pending",
kind=[INTEGER_KIND],
),
]

@classmethod
def get_execution_engine_compatibility(cls) -> Optional[str]:
return ">=1.3.0,<2.0.0"


class DetectionEventLogBlockV1(WorkflowBlock):
"""
Block that tracks detection events over time.

Maintains a dictionary of tracked objects with:
- First seen timestamp and frame
- Last seen timestamp and frame
- Class name
- Frame count (number of frames the object has been seen)

Only logs objects that have been seen for at least frame_threshold frames.
Runs cleanup every flush_interval frames, removing events not seen for stale_frames.
"""

def __init__(self):
# Dict[video_id, Dict[tracker_id, DetectionEvent]]
self._event_logs: Dict[str, Dict[int, DetectionEvent]] = {}
# Dict[video_id, last_flush_frame]
self._last_flush_frame: Dict[str, int] = {}
# Dict[video_id, frame_count] - internal frame counter (increments each run)
self._frame_count: Dict[str, int] = {}
# Dict[video_id, last_access_frame] - tracks when each video was last accessed (global frame count)
self._last_access: Dict[str, int] = {}
# Global frame counter for tracking video access order
self._global_frame: int = 0

@classmethod
def get_manifest(cls) -> Type[WorkflowBlockManifest]:
return BlockManifest

def _get_relative_time(
self, current_frame: int, metadata: VideoMetadata, fallback_fps: float
) -> float:
"""Calculate relative time in seconds since video started.

Uses frame number and FPS when available, otherwise uses fallback_fps.
Frame 1 corresponds to 0.0 seconds.
"""
fps = metadata.fps if metadata.fps and metadata.fps != 0 else fallback_fps
return (current_frame - 1) / fps

def _evict_oldest_video(self) -> None:
"""Remove the oldest video stream data when MAX_VIDEOS is exceeded."""
if len(self._event_logs) <= MAX_VIDEOS:
return

# Find the video with the oldest last access time
oldest_video_id = min(self._last_access, key=self._last_access.get)

# Remove all data for this video
self._event_logs.pop(oldest_video_id, None)
self._last_flush_frame.pop(oldest_video_id, None)
self._frame_count.pop(oldest_video_id, None)
self._last_access.pop(oldest_video_id, None)

def _remove_stale_events(
self,
event_log: Dict[int, DetectionEvent],
current_frame: int,
stale_frames: int,
) -> List[DetectionEvent]:
"""Remove events that haven't been seen for stale_frames.

Returns list of removed events for logging purposes.
"""
stale_tracker_ids = []
removed_events = []

for tracker_id, event in event_log.items():
frames_since_seen = current_frame - event.last_seen_frame
if frames_since_seen > stale_frames:
stale_tracker_ids.append(tracker_id)
removed_events.append(event)

for tracker_id in stale_tracker_ids:
del event_log[tracker_id]

return removed_events

def run(
self,
image: WorkflowImageData,
detections: sv.Detections,
frame_threshold: int,
flush_interval: int,
stale_frames: int,
fallback_fps: float = 1.0,
reference_timestamp: Optional[float] = None,
) -> BlockResult:
"""Process detections and update the event log.

Args:
image: Workflow image data containing video metadata.
detections: Tracked detections with tracker_id from ByteTracker.
frame_threshold: Minimum frames an object must be seen before logging.
flush_interval: How often to run stale event cleanup.
stale_frames: Remove events not seen for this many frames.
fallback_fps: FPS to use when video metadata doesn't provide FPS.
reference_timestamp: Optional Unix timestamp when video started. When provided,
absolute timestamps are included in output.

Returns:
Dictionary containing event_log, detections, total_logged, and total_pending.
"""
metadata = image.video_metadata
video_id = metadata.video_identifier

# Track global frame count and video access for eviction
self._global_frame += 1
self._last_access[video_id] = self._global_frame

# Increment internal frame counter
current_frame = self._frame_count.get(video_id, 0) + 1
self._frame_count[video_id] = current_frame

current_time = self._get_relative_time(current_frame, metadata, fallback_fps)

# Initialize event log for this video if needed
event_log = self._event_logs.setdefault(video_id, {})

# Evict oldest video if we've exceeded MAX_VIDEOS (after adding current video)
self._evict_oldest_video()

# Initialize last flush frame if not set
if video_id not in self._last_flush_frame:
self._last_flush_frame[video_id] = current_frame

# Check if it's time to run cleanup
last_flush = self._last_flush_frame.get(video_id, 0)
if (current_frame - last_flush) >= flush_interval:
self._remove_stale_events(event_log, current_frame, stale_frames)
self._last_flush_frame[video_id] = current_frame

# Process detections
if detections.tracker_id is None or len(detections.tracker_id) == 0:
# No tracked detections, return current log
event_log_dict, total_logged, total_pending = self._format_event_log(
event_log, frame_threshold, reference_timestamp
)
return {
OUTPUT_KEY: event_log_dict,
DETECTIONS_OUTPUT_KEY: detections,
"total_logged": total_logged,
"total_pending": total_pending,
}

# Get class names
class_names = detections.data.get("class_name", [])
if (
len(class_names) == 0
and hasattr(detections, "class_id")
and detections.class_id is not None
):
class_names = [f"class_{cid}" for cid in detections.class_id]

# Update event log for each tracked detection
for i, tracker_id in enumerate(detections.tracker_id):
tracker_id = int(tracker_id)
class_name = str(class_names[i]) if len(class_names) > 0 else "unknown"

if tracker_id in event_log:
# Update existing event
event = event_log[tracker_id]
event.last_seen_frame = current_frame
event.last_seen_timestamp = current_time
event.frame_count += 1

# Mark as logged once threshold is reached
if event.frame_count >= frame_threshold and not event.logged:
event.logged = True
logger.debug(
f"Object {tracker_id} ({event.class_name}) logged after {event.frame_count} frames"
)
else:
# Create new event
event_log[tracker_id] = DetectionEvent(
tracker_id=tracker_id,
class_name=class_name,
first_seen_frame=current_frame,
first_seen_timestamp=current_time,
last_seen_frame=current_frame,
last_seen_timestamp=current_time,
frame_count=1,
logged=False,
)

event_log_dict, total_logged, total_pending = self._format_event_log(
event_log, frame_threshold, reference_timestamp
)
return {
OUTPUT_KEY: event_log_dict,
DETECTIONS_OUTPUT_KEY: detections,
"total_logged": total_logged,
"total_pending": total_pending,
}

def _format_event_log(
self,
event_log: Dict[int, DetectionEvent],
frame_threshold: int,
reference_timestamp: Optional[float] = None,
) -> tuple:
"""Format the event log for output.

Returns:
Tuple of (event_log_dict, total_logged, total_pending)
"""
logged_events = {}
pending_events = {}

for tracker_id, event in event_log.items():
event_data = asdict(event)
del event_data["logged"]

# Internal timestamps are relative (seconds since video start)
# Rename to *_relative in output
first_seen_relative = event_data.pop("first_seen_timestamp")
last_seen_relative = event_data.pop("last_seen_timestamp")
event_data["first_seen_relative"] = first_seen_relative
event_data["last_seen_relative"] = last_seen_relative

# Add absolute timestamps if reference_timestamp is provided
if reference_timestamp is not None:
event_data["first_seen_timestamp"] = (
first_seen_relative + reference_timestamp
)
event_data["last_seen_timestamp"] = (
last_seen_relative + reference_timestamp
)

if event.frame_count >= frame_threshold:
logged_events[str(tracker_id)] = event_data
else:
pending_events[str(tracker_id)] = event_data

event_log_dict = {
"logged": logged_events,
"pending": pending_events,
}

return event_log_dict, len(logged_events), len(pending_events)
Loading
Loading