Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 36 additions & 32 deletions robusta_krr/core/runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,39 +176,43 @@ def _format_result(self, result: RunResult) -> RunResult:
}

async def _calculate_object_recommendations(self, object: K8sObjectData) -> Optional[RunResult]:
prometheus_loader = self._get_prometheus_loader(object.cluster)

if prometheus_loader is None:
return None

object.pods = await prometheus_loader.load_pods(object, self._strategy.settings.history_timedelta)
if object.pods == []:
# Fallback to Kubernetes API
object.pods = await self._k8s_loader.load_pods(object)

# NOTE: Kubernetes API returned pods, but Prometheus did not
# This might happen with fast executing jobs
if object.pods != []:
object.add_warning("NoPrometheusPods")
logger.warning(
f"Was not able to load any pods for {object} from Prometheus. "
"Loaded pods from Kubernetes API instead."
)

metrics = await prometheus_loader.gather_data(
object,
self._strategy,
self._strategy.settings.history_timedelta,
step=self._strategy.settings.timeframe_timedelta,
)
try:
prometheus_loader = self._get_prometheus_loader(object.cluster)

if prometheus_loader is None:
return None

object.pods = await prometheus_loader.load_pods(object, self._strategy.settings.history_timedelta)
if object.pods == []:
# Fallback to Kubernetes API
object.pods = await self._k8s_loader.load_pods(object)

# NOTE: Kubernetes API returned pods, but Prometheus did not
# This might happen with fast executing jobs
if object.pods != []:
object.add_warning("NoPrometheusPods")
logger.warning(
f"Was not able to load any pods for {object} from Prometheus. "
"Loaded pods from Kubernetes API instead."
)

metrics = await prometheus_loader.gather_data(
object,
self._strategy,
self._strategy.settings.history_timedelta,
step=self._strategy.settings.timeframe_timedelta,
)

# NOTE: We run this in a threadpool as the strategy calculation might be CPU intensive
# But keep in mind that numpy calcluations will not block the GIL
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(self._executor, self._strategy.run, metrics, object)
# NOTE: We run this in a threadpool as the strategy calculation might be CPU intensive
# But keep in mind that numpy calcluations will not block the GIL
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(self._executor, self._strategy.run, metrics, object)

logger.info(f"Calculated recommendations for {object} (using {len(metrics)} metrics)")
return self._format_result(result)
logger.info(f"Calculated recommendations for {object} (using {len(metrics)} metrics)")
return self._format_result(result)
except Exception as e:
logger.error(f"An error occurred while calculating recommendations for {object}: {e}")
return None

async def _check_data_availability(self, cluster: Optional[str]) -> None:
prometheus_loader = self._get_prometheus_loader(cluster)
Expand Down Expand Up @@ -308,7 +312,7 @@ async def _collect_result(self) -> Result:
raise CriticalRunnerException("No successful scans were made. Check the logs for more information.")

return Result(
scans=scans,
scans=successful_scans,
description=f"[b]{self._strategy.display_name.title()} Strategy[/b]\n\n{self._strategy.description}",
strategy=StrategyData(
name=str(self._strategy).lower(),
Expand Down
Loading