Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 12 additions & 10 deletions Mistral_7B_Instruct_GPTQ_finetune.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
"metadata": {},
"outputs": [],
"source": [
"# !pip install --upgrade trl peft accelerate bitsandbytes datasets auto-gptq optimum -q"
"!pip install --upgrade trl peft accelerate bitsandbytes datasets auto-gptq optimum -q"
]
},
{
Expand Down Expand Up @@ -156,6 +156,15 @@
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(\n",
" pretrained_model_name_or_path,\n",
" padding_side=\"left\",\n",
" add_eos_token=True,\n",
" add_bos_token=True,\n",
")\n",
"\n",
"quantization_config_loading = GPTQConfig(bits=4, use_exllama=False, tokenizer=tokenizer)\n",
"\n",
"def build_qlora_model(\n",
" pretrained_model_name_or_path: str = \"TheBloke/Mistral-7B-Instruct-v0.1-GPTQ\",\n",
" gradient_checkpointing: bool = True,\n",
Expand All @@ -182,17 +191,9 @@
"\n",
" # In below as well, when using any GPTQ model\n",
" # comment-out the quantization_config param\n",
"\n",
" tokenizer = AutoTokenizer.from_pretrained(\n",
" pretrained_model_name_or_path,\n",
" padding_side=\"left\",\n",
" add_eos_token=True,\n",
" add_bos_token=True,\n",
" )\n",
" \n",
" tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
" quantization_config_loading = GPTQConfig(bits=4, use_exllama=False, tokenizer=tokenizer)\n",
"\n",
" model = AutoModelForCausalLM.from_pretrained(\n",
" pretrained_model_name_or_path,\n",
" # quantization_config=bnb_config,\n",
Expand Down Expand Up @@ -672,6 +673,7 @@
" warmup_steps=5,\n",
" per_device_train_batch_size=1,\n",
" gradient_checkpointing=True,\n",
" gradient_checkpointing_kwargs={\"use_reentrant\": False},\n",
" gradient_accumulation_steps=4,\n",
" max_steps=1000,\n",
" learning_rate=2.5e-5,\n",
Expand Down
162 changes: 73 additions & 89 deletions Mistral_7b_FineTuning_with_DPO_Direct_Preference_Optimization.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -40,13 +40,12 @@
"from dataclasses import dataclass, field\n",
"from typing import Any, Dict, List, NewType, Optional, Tuple\n",
"import transformers\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig, pipeline\n",
"from datasets import load_dataset\n",
"from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training\n",
"from trl import DPOTrainer\n",
"import bitsandbytes as bnb\n",
"from google.colab import\n",
"\n",
"import google.colab\n",
"\n",
"model_name = \"teknium/OpenHermes-2.5-Mistral-7B\"\n",
"\n",
Expand Down Expand Up @@ -209,94 +208,79 @@
"metadata": {},
"outputs": [],
"source": [
"def train(model_name,\n",
" dataset,\n",
" tokenizer,\n",
" new_model,\n",
" #wandb_project: str = \"\",\n",
" #wandb_run_name: str = \"\",\n",
" #wandb_watch: str = \"\", # options: false | gradients | all\n",
" #wandb_log_model: str = \"\", # options: false | true\n",
" ):\n",
" peft_config = LoraConfig(\n",
" r=16,\n",
" lora_alpha=16,\n",
" lora_dropout=0.05,\n",
" bias=\"none\",\n",
" task_type=\"CAUSAL_LM\",\n",
" target_modules: List[str] =['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']\n",
" )\n",
" assert (\n",
" model_name\n",
" ), \"Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'\"\n",
"\n",
" # Check if parameter passed or if set within environ\n",
" '''\n",
" use_wandb = len(wandb_project) > 0 or (\n",
" \"WANDB_PROJECT\" in os.environ and len(os.environ[\"WANDB_PROJECT\"]) > 0\n",
" )\n",
" # Only overwrite environ if wandb param passed\n",
" if len(wandb_project) > 0:\n",
" os.environ[\"WANDB_PROJECT\"] = wandb_project\n",
" if len(wandb_watch) > 0:\n",
" os.environ[\"WANDB_WATCH\"] = wandb_watch\n",
" if len(wandb_log_model) > 0:\n",
" os.environ[\"WANDB_LOG_MODEL\"] = wandb_log_model\n",
" '''\n",
"\n",
" # Base Model\n",
" model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" torch_dtype=torch.float16,\n",
" load_in_4bit=True\n",
" )\n",
" model.config.use_cache = False\n",
"# Train the model\n",
"\n",
"peft_config = LoraConfig(\n",
" r=16,\n",
" lora_alpha=16,\n",
" lora_dropout=0.05,\n",
" bias=\"none\",\n",
" task_type=\"CAUSAL_LM\",\n",
" target_modules =['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']\n",
")\n",
"\n",
" # Reference model\n",
" ref_model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" torch_dtype=torch.float16,\n",
" load_in_4bit=True\n",
" )\n",
"assert (\n",
" model_name\n",
"), \"Please specify a model in the first cell\"\n",
"\n",
" # Training arguments\n",
" training_args = DPOConfig(\n",
" num_train_epochs=3,\n",
" per_device_train_batch_size=1,\n",
" gradient_accumulation_steps=4,\n",
" gradient_checkpointing=True,\n",
" learning_rate=5e-5,\n",
" lr_scheduler_type=\"linear\",\n",
" max_steps=200,\n",
" save_strategy=\"no\",\n",
" logging_steps=1,\n",
" output_dir=new_model,\n",
" optim=\"paged_adamw_32bit\",\n",
" warmup_steps=100,\n",
" fp16=True,\n",
" # report_to=\"wandb\",\n",
" )\n",
"# Check if parameter passed or if set within environ\n",
"'''\n",
"use_wandb = len(wandb_project) > 0 or (\n",
" \"WANDB_PROJECT\" in os.environ and len(os.environ[\"WANDB_PROJECT\"]) > 0\n",
")\n",
"# Only overwrite environ if wandb param passed\n",
"if len(wandb_project) > 0:\n",
" os.environ[\"WANDB_PROJECT\"] = wandb_project\n",
"if len(wandb_watch) > 0:\n",
" os.environ[\"WANDB_WATCH\"] = wandb_watch\n",
"if len(wandb_log_model) > 0:\n",
" os.environ[\"WANDB_LOG_MODEL\"] = wandb_log_model\n",
"'''\n",
"\n",
"# Base Model\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" torch_dtype=torch.float16,\n",
" load_in_4bit=True\n",
")\n",
"model.config.use_cache = False\n",
"\n",
" dpo_trainer = DPOTrainer(\n",
" model,\n",
" ref_model,\n",
" args=training_args,\n",
" train_dataset=dataset,\n",
" tokenizer=tokenizer,\n",
" peft_config=peft_config,\n",
" beta=0.1,\n",
" max_prompt_length=1024,\n",
" max_length=1536,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dpo_trainer.train(model_name, dataset, tokenizer, new_model)"
"# Reference model\n",
"ref_model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" torch_dtype=torch.float16,\n",
" load_in_4bit=True\n",
")\n",
"\n",
"# Training arguments\n",
"training_args = DPOConfig(\n",
" num_train_epochs=3,\n",
" per_device_train_batch_size=1,\n",
" gradient_accumulation_steps=4,\n",
" gradient_checkpointing=True,\n",
" learning_rate=5e-5,\n",
" lr_scheduler_type=\"linear\",\n",
" max_steps=200,\n",
" save_strategy=\"no\",\n",
" logging_steps=1,\n",
" output_dir=new_model,\n",
" optim=\"paged_adamw_32bit\",\n",
" warmup_steps=100,\n",
" fp16=True,\n",
" # report_to=\"wandb\",\n",
")\n",
"\n",
"dpo_trainer = DPOTrainer(\n",
" model,\n",
" ref_model,\n",
" args=training_args,\n",
" train_dataset=dataset,\n",
" tokenizer=tokenizer,\n",
" peft_config=peft_config,\n",
" beta=0.1,\n",
" max_prompt_length=1024,\n",
" max_length=1536,\n",
")"
]
},
{
Expand Down Expand Up @@ -366,7 +350,7 @@
" prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)\n",
"\n",
" chat_pipeline = pipeline(\n",
" \"text-generation\",\n",
" task=\"text-generation\",\n",
" model=new_model,\n",
" tokenizer=tokenizer\n",
" )\n",
Expand Down