@@ -201,19 +201,19 @@ cat("Target: "); str(y)
201201
202202```
203203## Input: List of 13
204- ## $ age :<tf.Tensor: shape=(), dtype=int32, numpy=63 >
205- ## $ sex :<tf.Tensor: shape=(), dtype=int32, numpy=0 >
206- ## $ cp :<tf.Tensor: shape=(), dtype=int32, numpy=4 >
207- ## $ trestbps:<tf.Tensor: shape=(), dtype=int32, numpy=124 >
208- ## $ chol :<tf.Tensor: shape=(), dtype=int32, numpy=197 >
204+ ## $ age :<tf.Tensor: shape=(), dtype=int32, numpy=45 >
205+ ## $ sex :<tf.Tensor: shape=(), dtype=int32, numpy=1 >
206+ ## $ cp :<tf.Tensor: shape=(), dtype=int32, numpy=1 >
207+ ## $ trestbps:<tf.Tensor: shape=(), dtype=int32, numpy=110 >
208+ ## $ chol :<tf.Tensor: shape=(), dtype=int32, numpy=264 >
209209## $ fbs :<tf.Tensor: shape=(), dtype=int32, numpy=0>
210210## $ restecg :<tf.Tensor: shape=(), dtype=int32, numpy=0>
211- ## $ thalach :<tf.Tensor: shape=(), dtype=int32, numpy=136 >
212- ## $ exang :<tf.Tensor: shape=(), dtype=int32, numpy=1 >
213- ## $ oldpeak :<tf.Tensor: shape=(), dtype=float32, numpy=0.0 >
211+ ## $ thalach :<tf.Tensor: shape=(), dtype=int32, numpy=132 >
212+ ## $ exang :<tf.Tensor: shape=(), dtype=int32, numpy=0 >
213+ ## $ oldpeak :<tf.Tensor: shape=(), dtype=float32, numpy=1.2 >
214214## $ slope :<tf.Tensor: shape=(), dtype=int32, numpy=2>
215215## $ ca :<tf.Tensor: shape=(), dtype=int32, numpy=0>
216- ## $ thal :<tf.Tensor: shape=(), dtype=string, numpy=b'normal '>
216+ ## $ thal :<tf.Tensor: shape=(), dtype=string, numpy=b'reversible '>
217217## Target: <tf.Tensor: shape=(), dtype=int32, numpy=0>
218218```
219219
@@ -371,7 +371,7 @@ preprocessed_x
371371
372372```
373373## tf.Tensor(
374- ## [[0. 0. 0. ... 0. 1 . 0.]
374+ ## [[0. 0. 0. ... 0. 0 . 0.]
375375## [0. 0. 0. ... 0. 0. 0.]
376376## [0. 0. 0. ... 0. 0. 0.]
377377## ...
@@ -463,45 +463,45 @@ training_model |> fit(
463463
464464```
465465## Epoch 1/20
466- ## 8/8 - 2s - 270ms /step - accuracy: 0.4357 - loss: 0.7353 - val_accuracy: 0.5000 - val_loss: 0.7068
466+ ## 8/8 - 2s - 280ms /step - accuracy: 0.4689 - loss: 0.7471 - val_accuracy: 0.5167 - val_loss: 0.7019
467467## Epoch 2/20
468- ## 8/8 - 0s - 13ms /step - accuracy: 0.5851 - loss: 0.6719 - val_accuracy: 0.6000 - val_loss: 0.6625
468+ ## 8/8 - 1s - 140ms /step - accuracy: 0.5602 - loss: 0.6785 - val_accuracy: 0.6333 - val_loss: 0.6491
469469## Epoch 3/20
470- ## 8/8 - 0s - 13ms /step - accuracy: 0.6100 - loss: 0.6419 - val_accuracy: 0.7000 - val_loss: 0.6241
470+ ## 8/8 - 0s - 46ms /step - accuracy: 0.6307 - loss: 0.6478 - val_accuracy: 0.7000 - val_loss: 0.6053
471471## Epoch 4/20
472- ## 8/8 - 0s - 13ms /step - accuracy: 0.6639 - loss: 0.5998 - val_accuracy: 0.7000 - val_loss: 0.5919
472+ ## 8/8 - 0s - 12ms /step - accuracy: 0.6432 - loss: 0.6246 - val_accuracy: 0.7667 - val_loss: 0.5692
473473## Epoch 5/20
474- ## 8/8 - 0s - 13ms/step - accuracy: 0.7593 - loss: 0.5628 - val_accuracy: 0.7000 - val_loss: 0.5648
474+ ## 8/8 - 0s - 13ms/step - accuracy: 0.7178 - loss: 0.5813 - val_accuracy: 0.7667 - val_loss: 0.5359
475475## Epoch 6/20
476- ## 8/8 - 0s - 13ms/step - accuracy: 0.7635 - loss: 0.5405 - val_accuracy: 0.7000 - val_loss: 0.5414
476+ ## 8/8 - 0s - 13ms/step - accuracy: 0.7344 - loss: 0.5371 - val_accuracy: 0.7833 - val_loss: 0.5067
477477## Epoch 7/20
478- ## 8/8 - 0s - 13ms/step - accuracy: 0.7759 - loss: 0.4975 - val_accuracy: 0.7167 - val_loss: 0.5204
478+ ## 8/8 - 0s - 13ms/step - accuracy: 0.7884 - loss: 0.5158 - val_accuracy: 0.8333 - val_loss: 0.4810
479479## Epoch 8/20
480- ## 8/8 - 0s - 13ms/step - accuracy: 0.7842 - loss: 0.4926 - val_accuracy: 0.7167 - val_loss: 0.5008
480+ ## 8/8 - 0s - 13ms/step - accuracy: 0.7759 - loss: 0.5011 - val_accuracy: 0.8500 - val_loss: 0.4569
481481## Epoch 9/20
482- ## 8/8 - 0s - 13ms/step - accuracy: 0.8133 - loss: 0.4600 - val_accuracy: 0.7167 - val_loss: 0.4849
482+ ## 8/8 - 0s - 13ms/step - accuracy: 0.7676 - loss: 0.4865 - val_accuracy: 0.8500 - val_loss: 0.4354
483483## Epoch 10/20
484- ## 8/8 - 0s - 14ms /step - accuracy: 0.8008 - loss: 0.4498 - val_accuracy: 0.7167 - val_loss: 0.4730
484+ ## 8/8 - 0s - 13ms /step - accuracy: 0.7925 - loss: 0.4601 - val_accuracy: 0.8333 - val_loss: 0.4161
485485## Epoch 11/20
486- ## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.4408 - val_accuracy: 0.7333 - val_loss: 0.4608
486+ ## 8/8 - 0s - 13ms/step - accuracy: 0.7967 - loss: 0.4617 - val_accuracy: 0.8667 - val_loss: 0.3976
487487## Epoch 12/20
488- ## 8/8 - 0s - 13ms/step - accuracy: 0.8008 - loss: 0.4297 - val_accuracy: 0.7667 - val_loss: 0.4508
488+ ## 8/8 - 0s - 13ms/step - accuracy: 0.7967 - loss: 0.4316 - val_accuracy: 0.8667 - val_loss: 0.3796
489489## Epoch 13/20
490- ## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.3921 - val_accuracy: 0.7833 - val_loss: 0.4404
490+ ## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.4058 - val_accuracy: 0.8833 - val_loss: 0.3643
491491## Epoch 14/20
492- ## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.3890 - val_accuracy: 0.8000 - val_loss: 0.4324
492+ ## 8/8 - 0s - 13ms/step - accuracy: 0.8174 - loss: 0.4197 - val_accuracy: 0.8833 - val_loss: 0.3510
493493## Epoch 15/20
494- ## 8/8 - 0s - 13ms /step - accuracy: 0.8382 - loss: 0.3783 - val_accuracy: 0.8333 - val_loss: 0.4243
494+ ## 8/8 - 0s - 14ms /step - accuracy: 0.8299 - loss: 0.3888 - val_accuracy: 0.8833 - val_loss: 0.3405
495495## Epoch 16/20
496- ## 8/8 - 0s - 14ms /step - accuracy: 0.8465 - loss: 0.3651 - val_accuracy: 0.8333 - val_loss: 0.4160
496+ ## 8/8 - 0s - 13ms /step - accuracy: 0.8257 - loss: 0.3820 - val_accuracy: 0.8833 - val_loss: 0.3294
497497## Epoch 17/20
498- ## 8/8 - 0s - 13ms/step - accuracy: 0.8340 - loss: 0.3545 - val_accuracy: 0.8333 - val_loss: 0.4076
498+ ## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.3746 - val_accuracy: 0.8833 - val_loss: 0.3223
499499## Epoch 18/20
500- ## 8/8 - 0s - 13ms/step - accuracy: 0.8589 - loss: 0.3493 - val_accuracy: 0.8500 - val_loss: 0.4017
500+ ## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.3487 - val_accuracy: 0.8833 - val_loss: 0.3153
501501## Epoch 19/20
502- ## 8/8 - 0s - 14ms/step - accuracy: 0.8506 - loss: 0.3227 - val_accuracy: 0.8500 - val_loss: 0.3967
502+ ## 8/8 - 0s - 14ms/step - accuracy: 0.8465 - loss: 0.3558 - val_accuracy: 0.8667 - val_loss: 0.3093
503503## Epoch 20/20
504- ## 8/8 - 0s - 13ms /step - accuracy: 0.8299 - loss: 0.3377 - val_accuracy: 0.8500 - val_loss: 0.3936
504+ ## 8/8 - 0s - 14ms /step - accuracy: 0.8672 - loss: 0.3570 - val_accuracy: 0.8667 - val_loss: 0.3036
505505```
506506
507507We quickly get to 80% validation accuracy.
@@ -534,7 +534,7 @@ predictions <- inference_model |> predict(input_dict)
534534```
535535
536536```
537- ## 1/1 - 0s - 273ms /step
537+ ## 1/1 - 0s - 394ms /step
538538```
539539
540540``` r
@@ -545,6 +545,6 @@ glue::glue(r"---(
545545```
546546
547547```
548- ## This particular patient had a 42 % probability
548+ ## This particular patient had a 44.8 % probability
549549## of having a heart disease, as evaluated by our model.
550550```
0 commit comments