Skip to content

Commit 93cd4a9

Browse files
committed
reknit examples
1 parent 7a02a57 commit 93cd4a9

23 files changed

+556
-770
lines changed

vignettes/examples/index.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
---
22
title: Keras examples
33
output: rmarkdown::html_vignette
4-
date: 'Last Modified: 2023-11-30; Last Rendered: 2024-07-16'
4+
date: 'Last Modified: 2023-11-30; Last Rendered: 2024-09-04'
55
vignette: >
66
%\VignetteIndexEntry{Keras examples}
77
%\VignetteEngine{knitr::rmarkdown}

vignettes/examples/nlp/neural_machine_translation_with_transformer.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -583,7 +583,7 @@ transformer |> fit(train_ds, epochs = epochs,
583583
```
584584

585585
```
586-
## 1297/1297 - 43s - 33ms/step - accuracy: 0.7229 - loss: 1.9745 - val_accuracy: 0.7338 - val_loss: 1.7418
586+
## 1297/1297 - 48s - 37ms/step - accuracy: 0.7463 - loss: 1.8009 - val_accuracy: 0.7657 - val_loss: 1.5766
587587
```
588588

589589

vignettes/examples/nlp/text_classification_from_scratch.Rmd

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -402,11 +402,11 @@ model |> fit(train_ds, validation_data = val_ds, epochs = epochs)
402402

403403
```
404404
## Epoch 1/3
405-
## 625/625 - 5s - 8ms/step - accuracy: 0.6903 - loss: 0.5292 - val_accuracy: 0.8612 - val_loss: 0.3235
405+
## 625/625 - 6s - 10ms/step - accuracy: 0.6953 - loss: 0.5231 - val_accuracy: 0.8618 - val_loss: 0.3205
406406
## Epoch 2/3
407-
## 625/625 - 1s - 2ms/step - accuracy: 0.9054 - loss: 0.2398 - val_accuracy: 0.8698 - val_loss: 0.3342
407+
## 625/625 - 1s - 2ms/step - accuracy: 0.9032 - loss: 0.2390 - val_accuracy: 0.8742 - val_loss: 0.3113
408408
## Epoch 3/3
409-
## 625/625 - 1s - 2ms/step - accuracy: 0.9553 - loss: 0.1253 - val_accuracy: 0.8744 - val_loss: 0.3402
409+
## 625/625 - 2s - 2ms/step - accuracy: 0.9553 - loss: 0.1211 - val_accuracy: 0.8666 - val_loss: 0.3531
410410
```
411411

412412
## Evaluate the model on the test set
@@ -417,15 +417,15 @@ model |> evaluate(test_ds)
417417
```
418418

419419
```
420-
## 782/782 - 1s - 2ms/step - accuracy: 0.8630 - loss: 0.3716
420+
## 782/782 - 1s - 2ms/step - accuracy: 0.8520 - loss: 0.3960
421421
```
422422

423423
```
424424
## $accuracy
425-
## [1] 0.86296
425+
## [1] 0.85204
426426
##
427427
## $loss
428-
## [1] 0.3716201
428+
## [1] 0.3959631
429429
```
430430

431431
## Make an end-to-end model
@@ -455,12 +455,12 @@ end_to_end_model |> evaluate(raw_test_ds)
455455
```
456456

457457
```
458-
## 782/782 - 3s - 4ms/step - accuracy: 0.8630 - loss: 0.0000e+00
458+
## 782/782 - 3s - 4ms/step - accuracy: 0.8520 - loss: 0.0000e+00
459459
```
460460

461461
```
462462
## $accuracy
463-
## [1] 0.86296
463+
## [1] 0.85204
464464
##
465465
## $loss
466466
## [1] 0

vignettes/examples/structured_data/imbalanced_classification.Rmd

Lines changed: 37 additions & 37 deletions
Large diffs are not rendered by default.

vignettes/examples/structured_data/structured_data_classification_with_feature_space.Rmd

Lines changed: 32 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -201,19 +201,19 @@ cat("Target: "); str(y)
201201

202202
```
203203
## Input: List of 13
204-
## $ age :<tf.Tensor: shape=(), dtype=int32, numpy=63>
205-
## $ sex :<tf.Tensor: shape=(), dtype=int32, numpy=0>
206-
## $ cp :<tf.Tensor: shape=(), dtype=int32, numpy=4>
207-
## $ trestbps:<tf.Tensor: shape=(), dtype=int32, numpy=124>
208-
## $ chol :<tf.Tensor: shape=(), dtype=int32, numpy=197>
204+
## $ age :<tf.Tensor: shape=(), dtype=int32, numpy=45>
205+
## $ sex :<tf.Tensor: shape=(), dtype=int32, numpy=1>
206+
## $ cp :<tf.Tensor: shape=(), dtype=int32, numpy=1>
207+
## $ trestbps:<tf.Tensor: shape=(), dtype=int32, numpy=110>
208+
## $ chol :<tf.Tensor: shape=(), dtype=int32, numpy=264>
209209
## $ fbs :<tf.Tensor: shape=(), dtype=int32, numpy=0>
210210
## $ restecg :<tf.Tensor: shape=(), dtype=int32, numpy=0>
211-
## $ thalach :<tf.Tensor: shape=(), dtype=int32, numpy=136>
212-
## $ exang :<tf.Tensor: shape=(), dtype=int32, numpy=1>
213-
## $ oldpeak :<tf.Tensor: shape=(), dtype=float32, numpy=0.0>
211+
## $ thalach :<tf.Tensor: shape=(), dtype=int32, numpy=132>
212+
## $ exang :<tf.Tensor: shape=(), dtype=int32, numpy=0>
213+
## $ oldpeak :<tf.Tensor: shape=(), dtype=float32, numpy=1.2>
214214
## $ slope :<tf.Tensor: shape=(), dtype=int32, numpy=2>
215215
## $ ca :<tf.Tensor: shape=(), dtype=int32, numpy=0>
216-
## $ thal :<tf.Tensor: shape=(), dtype=string, numpy=b'normal'>
216+
## $ thal :<tf.Tensor: shape=(), dtype=string, numpy=b'reversible'>
217217
## Target: <tf.Tensor: shape=(), dtype=int32, numpy=0>
218218
```
219219

@@ -371,7 +371,7 @@ preprocessed_x
371371

372372
```
373373
## tf.Tensor(
374-
## [[0. 0. 0. ... 0. 1. 0.]
374+
## [[0. 0. 0. ... 0. 0. 0.]
375375
## [0. 0. 0. ... 0. 0. 0.]
376376
## [0. 0. 0. ... 0. 0. 0.]
377377
## ...
@@ -463,45 +463,45 @@ training_model |> fit(
463463

464464
```
465465
## Epoch 1/20
466-
## 8/8 - 2s - 270ms/step - accuracy: 0.4357 - loss: 0.7353 - val_accuracy: 0.5000 - val_loss: 0.7068
466+
## 8/8 - 2s - 280ms/step - accuracy: 0.4689 - loss: 0.7471 - val_accuracy: 0.5167 - val_loss: 0.7019
467467
## Epoch 2/20
468-
## 8/8 - 0s - 13ms/step - accuracy: 0.5851 - loss: 0.6719 - val_accuracy: 0.6000 - val_loss: 0.6625
468+
## 8/8 - 1s - 140ms/step - accuracy: 0.5602 - loss: 0.6785 - val_accuracy: 0.6333 - val_loss: 0.6491
469469
## Epoch 3/20
470-
## 8/8 - 0s - 13ms/step - accuracy: 0.6100 - loss: 0.6419 - val_accuracy: 0.7000 - val_loss: 0.6241
470+
## 8/8 - 0s - 46ms/step - accuracy: 0.6307 - loss: 0.6478 - val_accuracy: 0.7000 - val_loss: 0.6053
471471
## Epoch 4/20
472-
## 8/8 - 0s - 13ms/step - accuracy: 0.6639 - loss: 0.5998 - val_accuracy: 0.7000 - val_loss: 0.5919
472+
## 8/8 - 0s - 12ms/step - accuracy: 0.6432 - loss: 0.6246 - val_accuracy: 0.7667 - val_loss: 0.5692
473473
## Epoch 5/20
474-
## 8/8 - 0s - 13ms/step - accuracy: 0.7593 - loss: 0.5628 - val_accuracy: 0.7000 - val_loss: 0.5648
474+
## 8/8 - 0s - 13ms/step - accuracy: 0.7178 - loss: 0.5813 - val_accuracy: 0.7667 - val_loss: 0.5359
475475
## Epoch 6/20
476-
## 8/8 - 0s - 13ms/step - accuracy: 0.7635 - loss: 0.5405 - val_accuracy: 0.7000 - val_loss: 0.5414
476+
## 8/8 - 0s - 13ms/step - accuracy: 0.7344 - loss: 0.5371 - val_accuracy: 0.7833 - val_loss: 0.5067
477477
## Epoch 7/20
478-
## 8/8 - 0s - 13ms/step - accuracy: 0.7759 - loss: 0.4975 - val_accuracy: 0.7167 - val_loss: 0.5204
478+
## 8/8 - 0s - 13ms/step - accuracy: 0.7884 - loss: 0.5158 - val_accuracy: 0.8333 - val_loss: 0.4810
479479
## Epoch 8/20
480-
## 8/8 - 0s - 13ms/step - accuracy: 0.7842 - loss: 0.4926 - val_accuracy: 0.7167 - val_loss: 0.5008
480+
## 8/8 - 0s - 13ms/step - accuracy: 0.7759 - loss: 0.5011 - val_accuracy: 0.8500 - val_loss: 0.4569
481481
## Epoch 9/20
482-
## 8/8 - 0s - 13ms/step - accuracy: 0.8133 - loss: 0.4600 - val_accuracy: 0.7167 - val_loss: 0.4849
482+
## 8/8 - 0s - 13ms/step - accuracy: 0.7676 - loss: 0.4865 - val_accuracy: 0.8500 - val_loss: 0.4354
483483
## Epoch 10/20
484-
## 8/8 - 0s - 14ms/step - accuracy: 0.8008 - loss: 0.4498 - val_accuracy: 0.7167 - val_loss: 0.4730
484+
## 8/8 - 0s - 13ms/step - accuracy: 0.7925 - loss: 0.4601 - val_accuracy: 0.8333 - val_loss: 0.4161
485485
## Epoch 11/20
486-
## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.4408 - val_accuracy: 0.7333 - val_loss: 0.4608
486+
## 8/8 - 0s - 13ms/step - accuracy: 0.7967 - loss: 0.4617 - val_accuracy: 0.8667 - val_loss: 0.3976
487487
## Epoch 12/20
488-
## 8/8 - 0s - 13ms/step - accuracy: 0.8008 - loss: 0.4297 - val_accuracy: 0.7667 - val_loss: 0.4508
488+
## 8/8 - 0s - 13ms/step - accuracy: 0.7967 - loss: 0.4316 - val_accuracy: 0.8667 - val_loss: 0.3796
489489
## Epoch 13/20
490-
## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.3921 - val_accuracy: 0.7833 - val_loss: 0.4404
490+
## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.4058 - val_accuracy: 0.8833 - val_loss: 0.3643
491491
## Epoch 14/20
492-
## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.3890 - val_accuracy: 0.8000 - val_loss: 0.4324
492+
## 8/8 - 0s - 13ms/step - accuracy: 0.8174 - loss: 0.4197 - val_accuracy: 0.8833 - val_loss: 0.3510
493493
## Epoch 15/20
494-
## 8/8 - 0s - 13ms/step - accuracy: 0.8382 - loss: 0.3783 - val_accuracy: 0.8333 - val_loss: 0.4243
494+
## 8/8 - 0s - 14ms/step - accuracy: 0.8299 - loss: 0.3888 - val_accuracy: 0.8833 - val_loss: 0.3405
495495
## Epoch 16/20
496-
## 8/8 - 0s - 14ms/step - accuracy: 0.8465 - loss: 0.3651 - val_accuracy: 0.8333 - val_loss: 0.4160
496+
## 8/8 - 0s - 13ms/step - accuracy: 0.8257 - loss: 0.3820 - val_accuracy: 0.8833 - val_loss: 0.3294
497497
## Epoch 17/20
498-
## 8/8 - 0s - 13ms/step - accuracy: 0.8340 - loss: 0.3545 - val_accuracy: 0.8333 - val_loss: 0.4076
498+
## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.3746 - val_accuracy: 0.8833 - val_loss: 0.3223
499499
## Epoch 18/20
500-
## 8/8 - 0s - 13ms/step - accuracy: 0.8589 - loss: 0.3493 - val_accuracy: 0.8500 - val_loss: 0.4017
500+
## 8/8 - 0s - 13ms/step - accuracy: 0.8506 - loss: 0.3487 - val_accuracy: 0.8833 - val_loss: 0.3153
501501
## Epoch 19/20
502-
## 8/8 - 0s - 14ms/step - accuracy: 0.8506 - loss: 0.3227 - val_accuracy: 0.8500 - val_loss: 0.3967
502+
## 8/8 - 0s - 14ms/step - accuracy: 0.8465 - loss: 0.3558 - val_accuracy: 0.8667 - val_loss: 0.3093
503503
## Epoch 20/20
504-
## 8/8 - 0s - 13ms/step - accuracy: 0.8299 - loss: 0.3377 - val_accuracy: 0.8500 - val_loss: 0.3936
504+
## 8/8 - 0s - 14ms/step - accuracy: 0.8672 - loss: 0.3570 - val_accuracy: 0.8667 - val_loss: 0.3036
505505
```
506506

507507
We quickly get to 80% validation accuracy.
@@ -534,7 +534,7 @@ predictions <- inference_model |> predict(input_dict)
534534
```
535535

536536
```
537-
## 1/1 - 0s - 273ms/step
537+
## 1/1 - 0s - 394ms/step
538538
```
539539

540540
``` r
@@ -545,6 +545,6 @@ glue::glue(r"---(
545545
```
546546

547547
```
548-
## This particular patient had a 42% probability
548+
## This particular patient had a 44.8% probability
549549
## of having a heart disease, as evaluated by our model.
550550
```

0 commit comments

Comments
 (0)