keras 2.11.0
-
Default TensorFlow version installed by
install_keras()is now 2.11. -
All optimizers have been updated for Keras/TensorFlow version 2.11.
Arguments to all the optimizers have changed. To access the previous
optimizer implementations, use the constructors available at
keras$optimizers$legacy. For example, usekeras$optimizers$legacy$Adam()
for the previous implementation ofoptimizer_adam(). -
New optimizer
optimizer_frtl(). -
updates to layers:
layer_attention()gainsscore_modeanddropoutarguments.layer_discretization()gainsoutput_modeandsparsearguments.layer_gaussian_dropout()andlayer_gaussian_noise()gain aseedargument.layer_hashing()gainsoutput_modeandsparsearguments.layer_integer_lookup()gainsvocabulary_dtypeandidf_weightsarguments.layer_normalization()gains aninvertargument.layer_string_lookup()gains anidf_weightsargument.
-
Fixed issue where
input_shapesupplied to custom layers defined withnew_layer_class()
would result in an error (#1338) -
New
callback_backup_and_restore(), for resuming an interruptedfit()call. -
The merging family of layers (
layer_add,layer_concatenate, etc.) gain the ability
to accept layers in..., allowing for easier composition of residual blocks with the pipe%>%.
e.g. something like this now works:block_1_output <- ... block_2_output <- block_1_output %>% layer_conv_2d(64, 3, activation = "relu", padding = "same") %>% layer_add(block_1_output)
-
model$get_config()method now returns an R object that can be safely serialized
to rds. -
keras_array()now reflects unconverted Python objects. This enables passing
objects likepandas.Series()tofit()andevaluate()methods. (#1341)