Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -130,6 +130,7 @@ class PGVectorStore(BasePydanticVectorStore):
user="postgres",
table_name="paul_graham_essay",
embed_dim=1536 # openai embedding dimension
vector_search_method="cosine_distance" # Optional specify vector search method. Default is cosine_distance.
)
```
"""
Expand Down Expand Up @@ -272,6 +273,7 @@ def from_params(
use_jsonb: bool = False,
hnsw_kwargs: Optional[Dict[str, Any]] = None,
create_engine_kwargs: Optional[Dict[str, Any]] = None,
vector_search_method: Optional[str] = "cosine_distance",
) -> "PGVectorStore":
"""Construct from params.

Expand All @@ -296,6 +298,7 @@ def from_params(
contains "hnsw_ef_construction", "hnsw_ef_search", "hnsw_m", and optionally "hnsw_dist_method". Defaults to None,
which turns off HNSW search.
create_engine_kwargs (Optional[Dict[str, Any]], optional): Engine parameters to pass to create_engine. Defaults to None.
vector_search_method (Optional[str], optional): Vector search method. Defaults to cosine_distance.

Returns:
PGVectorStore: Instance of PGVectorStore constructed from params.
Expand All @@ -321,6 +324,7 @@ def from_params(
use_jsonb=use_jsonb,
hnsw_kwargs=hnsw_kwargs,
create_engine_kwargs=create_engine_kwargs,
vector_search_method=vector_search_method,
)

@property
Expand Down Expand Up @@ -597,13 +601,72 @@ def _build_query(
) -> Any:
from sqlalchemy import select, text

stmt = select( # type: ignore
self._table_class.id,
self._table_class.node_id,
self._table_class.text,
self._table_class.metadata_,
self._table_class.embedding.cosine_distance(embedding).label("distance"),
).order_by(text("distance asc"))
match self.vector_search_method:
case "cosine_distance":
stmt = select( # type: ignore
self._table_class.id,
self._table_class.node_id,
self._table_class.text,
self._table_class.metadata_,
self._table_class.embedding.cosine_distance(embedding).label(
"distance"
),
).order_by(text("distance asc"))

case "max_inner_product":
stmt = select( # type: ignore
self._table_class.id,
self._table_class.node_id,
self._table_class.text,
self._table_class.metadata_,
self._table_class.embedding.max_inner_product(embedding).label(
"distance"
),
).order_by(text("distance asc"))

case "l2_distance":
stmt = select( # type: ignore
self._table_class.id,
self._table_class.node_id,
self._table_class.text,
self._table_class.metadata_,
self._table_class.embedding.l2_distance(embedding).label(
"distance"
),
).order_by(text("distance asc"))

case "l1_distance":
stmt = select( # type: ignore
self._table_class.id,
self._table_class.node_id,
self._table_class.text,
self._table_class.metadata_,
self._table_class.embedding.l1_distance(embedding).label(
"distance"
),
).order_by(text("distance asc"))

case "hamming_distance":
stmt = select( # type: ignore
self._table_class.id,
self._table_class.node_id,
self._table_class.text,
self._table_class.metadata_,
self._table_class.embedding.hamming_distance(embedding).label(
"distance"
),
).order_by(text("distance asc"))

case "jaccard_distance":
stmt = select( # type: ignore
self._table_class.id,
self._table_class.node_id,
self._table_class.text,
self._table_class.metadata_,
self._table_class.embedding.jaccard_distance(embedding).label(
"distance"
),
).order_by(text("distance asc"))

return self._apply_filters_and_limit(stmt, limit, metadata_filters)

Expand Down