The Runpod provider for the AI SDK contains language model and image generation support for Runpod's public endpoints.
The Runpod provider is available in the @runpod/ai-sdk-provider
module. You can install it with:
# npm
npm install @runpod/ai-sdk-provider
# pnpm
pnpm add @runpod/ai-sdk-provider
# yarn
yarn add @runpod/ai-sdk-provider
# bun
bun add @runpod/ai-sdk-provider
You can import the default provider instance runpod
from @runpod/ai-sdk-provider
:
import { runpod } from '@runpod/ai-sdk-provider';
If you need a customized setup, you can import createRunpod
and create a provider instance with your settings:
import { createRunpod } from '@runpod/ai-sdk-provider';
const runpod = createRunpod({
apiKey: 'your-api-key', // optional, defaults to RUNPOD_API_KEY environment variable
baseURL: 'custom-url', // optional, for custom endpoints
headers: {
/* custom headers */
}, // optional
});
You can use the following optional settings to customize the Runpod provider instance:
-
baseURL string
Use a different URL prefix for API calls, e.g. to use proxy servers or custom endpoints. Supports vLLM deployments, SGLang servers, and any OpenAI-compatible API. The default prefix is
https://api.runpod.ai/v2
. -
apiKey string
API key that is being sent using the
Authorization
header. It defaults to theRUNPOD_API_KEY
environment variable. You can obtain your api key from the Runpod Console under "API Keys". -
headers Record<string,string>
Custom headers to include in the requests.
-
fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>
Custom fetch implementation. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.
You can create language models using the provider instance. The first argument is the model ID:
import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
const { text } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt: 'What is the capital of Germany?',
});
Returns:
text
- Generated text stringfinishReason
- Why generation stopped ('stop', 'length', etc.)usage
- Token usage information (prompt, completion, total tokens)
import { runpod } from '@runpod/ai-sdk-provider';
import { streamText } from 'ai';
const { textStream } = await streamText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt:
'Write a short poem about artificial intelligence in exactly 4 lines.',
temperature: 0.7,
});
for await (const delta of textStream) {
process.stdout.write(delta);
}
Model ID | Description | Streaming | Object Generation | Tool Usage | Reasoning Notes |
---|---|---|---|---|---|
deep-cogito/deep-cogito-v2-llama-70b |
70B parameter general-purpose LLM with advanced reasoning | ✅ | ❌ | ✅ | Emits <think>…</think> inline; no separate reasoning parts |
qwen/qwen3-32b-awq |
32B parameter multilingual model with strong reasoning capabilities | ✅ | ❌ | ✅ | Standard reasoning events |
const { text } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'What is the capital of France?' },
],
});
import { generateText, tool } from 'ai';
import { z } from 'zod';
const { text, toolCalls } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt: 'What is the weather like in San Francisco?',
tools: {
getWeather: tool({
description: 'Get weather information for a city',
inputSchema: z.object({
city: z.string().describe('The city name'),
}),
execute: async ({ city }) => {
return `The weather in ${city} is sunny.`;
},
}),
},
});
Additional Returns:
toolCalls
- Array of tool calls made by the modeltoolResults
- Results from executed tools
Using generateObject
to enforce structured ouput is not supported by two models that are part of this provider.
You can still return structured data by instructing the model to return JSON and validating it yourself.
import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
import { z } from 'zod';
const RecipeSchema = z.object({
name: z.string(),
ingredients: z.array(z.string()),
steps: z.array(z.string()),
});
const { text } = await generateText({
model: runpod('qwen/qwen3-32b-awq'),
messages: [
{
role: 'system',
content:
'return ONLY valid JSON matching { name: string; ingredients: string[]; steps: string[] }',
},
{ role: 'user', content: 'generate a lasagna recipe.' },
],
temperature: 0,
});
const parsed = JSON.parse(text);
const result = RecipeSchema.safeParse(parsed);
if (!result.success) {
// handle invalid JSON shape
}
console.log(result.success ? result.data : parsed);
You can create Runpod image models using the .imageModel()
factory method.
import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateImage as generateImage } from 'ai';
const { image } = await generateImage({
model: runpod.imageModel('qwen/qwen-image'),
prompt: 'A serene mountain landscape at sunset',
aspectRatio: '4:3',
});
// Save to filesystem
import { writeFileSync } from 'fs';
writeFileSync('landscape.jpg', image.uint8Array);
Returns:
image.uint8Array
- Binary image data (efficient for processing/saving)image.base64
- Base64 encoded string (for web display)image.mediaType
- MIME type ('image/jpeg' or 'image/png')warnings
- Array of any warnings about unsupported parameters
Model ID | Description | Supported Aspect Ratios |
---|---|---|
qwen/qwen-image |
Text-to-image generation | 1:1, 4:3, 3:4 |
bytedance/seedream-3.0 |
Advanced text-to-image model | 1:1, 4:3, 3:4 |
black-forest-labs/flux-1-schnell |
Fast image generation (4 steps) | 1:1, 4:3, 3:4 |
black-forest-labs/flux-1-dev |
High-quality image generation | 1:1, 4:3, 3:4 |
black-forest-labs/flux-1-kontext-dev |
Context-aware image generation | 1:1, 4:3, 3:4 |
qwen/qwen-image-edit |
Image editing (prompt-guided) | 1:1, 4:3, 3:4 |
Note: The provider uses strict validation for image parameters. Unsupported aspect ratios (like 16:9
, 9:16
, 3:2
, 2:3
) will throw an InvalidArgumentError
with a clear message about supported alternatives.
const { image } = await generateImage({
model: runpod.imageModel('bytedance/seedream-3.0'),
prompt: 'A sunset over mountains',
size: '1328x1328',
seed: 42,
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality',
enable_safety_checker: true,
},
},
});
Transform existing images using text prompts.
// Example: Transform existing image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Transform this into a cyberpunk style with neon lights',
aspectRatio: '1:1',
providerOptions: {
runpod: {
image: 'https://example.com/input-image.jpg',
},
},
});
// Example: Using base64 encoded image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Make this image look like a painting',
providerOptions: {
runpod: {
image: '...',
},
},
});
// Full control over generation parameters
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-dev'),
prompt: 'A majestic dragon breathing fire in a medieval castle',
size: '1328x1328',
seed: 42, // For reproducible results
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality, distorted, ugly, bad anatomy',
enable_safety_checker: true,
num_inference_steps: 50, // Higher quality (default: 28)
guidance: 3.5, // Stronger prompt adherence (default: 2)
output_format: 'png', // High quality format
// Polling settings for long generations
maxPollAttempts: 30,
pollIntervalMillis: 4000,
},
},
});
// Fast generation with minimal steps
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-schnell'),
prompt: 'A simple red apple',
aspectRatio: '1:1',
providerOptions: {
runpod: {
num_inference_steps: 2, // Even faster (default: 4)
guidance: 10, // Higher guidance for simple prompts
output_format: 'jpg', // Smaller file size
},
},
});
Runpod image models support flexible provider options through the providerOptions.runpod
object:
Option | Type | Default | Description |
---|---|---|---|
negative_prompt |
string |
"" |
Text describing what you don't want in the image |
enable_safety_checker |
boolean |
true |
Enable content safety filtering |
image |
string |
- | Input image: URL or base64 data URI (required for Flux Kontext models) |
num_inference_steps |
number |
Auto | Number of denoising steps (Flux: 4 for schnell, 28 for others) |
guidance |
number |
Auto | Guidance scale for prompt adherence (Flux: 7 for schnell, 2 for others) |
output_format |
string |
"png" |
Output image format ("png" or "jpg") |
maxPollAttempts |
number |
60 |
Maximum polling attempts for async generation |
pollIntervalMillis |
number |
5000 |
Polling interval in milliseconds (5 seconds) |
Runpod is the foundation for developers to build, deploy, and scale custom AI systems.
Beyond some of the public endpoints you've seen above (+ more generative media APIs), Runpod offers custom serverless endpoints, dedicated pods and instant clusters, fine-tuning, and a comprehensive hub of open-source AI repositories (like ComfyUI, Axolotl, FLUX.1-dev-juiced, Chatterbox, vLLM, and SGLang).