-
Notifications
You must be signed in to change notification settings - Fork 24
Add Loquacious hugginface to bliss jobs #626
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Draft
JackTemaki
wants to merge
2
commits into
main
Choose a base branch
from
nick-robin-loquacious
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Draft
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,309 @@ | ||
| import re | ||
| from typing import Dict, Any | ||
| import os | ||
| from tqdm import tqdm | ||
|
|
||
| from sisyphus import Job, Task, Path | ||
|
|
||
| from i6_core.lib.corpus import Corpus, Recording, Segment | ||
|
|
||
| import subprocess as sp | ||
| from io import BytesIO | ||
|
|
||
| filters = { | ||
| "voxpopuli": re.compile("PLENARY"), | ||
| "commonvoice": re.compile("common_voice"), | ||
| "librispeech": re.compile("^[0-9-]*$"), | ||
| "yodas": re.compile(".wav$"), | ||
| } | ||
|
|
||
|
|
||
| def extract_audio_from_text(entry, output_path): | ||
| sp.run( | ||
| [ | ||
| "ffmpeg", | ||
| "-y", | ||
| "-hide_banner", | ||
| "-loglevel", | ||
| "error", | ||
| "-threads", | ||
| "2", | ||
| "-i", | ||
| "pipe:0", | ||
| "-ar", | ||
| "16000", | ||
| "-ac", | ||
| "1", | ||
| "-c:a", | ||
| "libvorbis", | ||
| "-b:a", | ||
| "16k", | ||
| os.path.join(output_path, entry["ID"] + ".ogg"), | ||
| ], | ||
| input=BytesIO(entry["wav"]["bytes"]).read(), | ||
| check=True, | ||
| ) | ||
| entry.pop("wav") | ||
| return entry | ||
|
|
||
|
|
||
| def remove_audio_from_entry(entry): | ||
| entry.pop("wav") | ||
| return entry | ||
|
|
||
|
|
||
| def create_recording_from_entry(entry, out_dir: str): | ||
| recording = Recording() | ||
| recording.name = entry["ID"] | ||
| recording.audio = os.path.join(out_dir, entry["ID"] + ".ogg") | ||
|
|
||
| segment = Segment() | ||
| segment.name = "0" | ||
| segment.start = 0.0 | ||
| segment.end = entry["duration"] | ||
| segment.orth = entry["text"] | ||
|
|
||
| recording.add_segment(segment) | ||
| return recording | ||
|
|
||
|
|
||
| class PrepareLoquaciousDatasetJob(Job): | ||
| @classmethod | ||
| def hash(cls, parsed_args: Dict[str, Any]) -> str: | ||
| d = {} | ||
| return super().hash(d) | ||
|
|
||
|
|
||
| class PrepareLoquaciousTrainSmallDatasetJob(PrepareLoquaciousDatasetJob): | ||
| """ | ||
| Prepare the Loquacious dataset from HuggingFace. | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| hf_home_dir: Path, | ||
| ): | ||
| self.hf_home_dir = hf_home_dir | ||
|
|
||
| self.out_corpus = self.output_path("loquacious_train_small.xml.gz") | ||
| self.out_dir = self.output_path("audio", directory=True) | ||
|
|
||
| def tasks(self): | ||
| yield Task("run", rqmt={"cpu": 16, "mem": 32, "time": 4}) | ||
|
|
||
| def run(self): | ||
| os.environ["HF_HOME"] = self.hf_home_dir.get_path() | ||
| from datasets import load_dataset | ||
|
|
||
| dataset = load_dataset( | ||
| path="speechbrain/LoquaciousSet", | ||
| name="small", | ||
| split="train", | ||
| num_proc=8, | ||
| ) | ||
| print("extract audio") | ||
| text_only_dataset = dataset.map( | ||
| extract_audio_from_text, | ||
| fn_kwargs={"output_path": self.out_dir.get_path()}, | ||
| num_proc=8, | ||
| load_from_cache_file=False, | ||
| ) | ||
| print("start corpus creation") | ||
| corpus = Corpus() | ||
| corpus.name = "loquacious-train-small" | ||
| progress = tqdm(text_only_dataset, file=open("/dev/null", "w")) | ||
| for i, entry in enumerate(progress): | ||
| if i % 100 == 0: | ||
| # do not bloat log files, so print manually | ||
| print(progress) | ||
| recording = create_recording_from_entry(entry, self.out_dir.get_path()) | ||
| corpus.add_recording(recording) | ||
|
|
||
| corpus.dump(self.out_corpus.get_path()) | ||
|
|
||
|
|
||
| class PrepareLoquaciousTrainMediumDatasetJob(PrepareLoquaciousDatasetJob): | ||
| """ | ||
| Prepare the Loquacious dataset from HuggingFace. | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| hf_home_dir: Path, | ||
| ): | ||
| self.hf_home_dir = hf_home_dir | ||
|
|
||
| self.out_corpus = self.output_path("loquacious_train_medium.xml.gz") | ||
| self.out_corpus_wo_small = self.output_path("loquacious_train_medium_wo_small.xml.gz") | ||
| self.out_dir = self.output_path("audio", directory=True) | ||
|
|
||
| def tasks(self): | ||
| yield Task("run", rqmt={"cpu": 8, "mem": 32, "time": 40}) | ||
|
|
||
| def run(self): | ||
| os.environ["HF_HOME"] = self.hf_home_dir.get_path() | ||
| from datasets import load_dataset | ||
|
|
||
| print("load small and medium datasets using HF") | ||
| dataset_medium = load_dataset( | ||
| path="speechbrain/LoquaciousSet", | ||
| name="medium", | ||
| split="train", | ||
| num_proc=8, | ||
| ) | ||
| dataset_small = load_dataset( | ||
| path="speechbrain/LoquaciousSet", | ||
| name="small", | ||
| split="train", | ||
| num_proc=8, | ||
| ) | ||
|
|
||
| print("remove audio from small set") | ||
| text_only_dataset_small = dataset_small.map(remove_audio_from_entry, num_proc=8, load_from_cache_file=False) | ||
|
|
||
| print("extract audio from medium set") | ||
| text_only_dataset_medium = dataset_medium.map( | ||
| extract_audio_from_text, | ||
| fn_kwargs={"output_path": self.out_dir.get_path()}, | ||
| num_proc=8, | ||
| load_from_cache_file=False, | ||
| ) | ||
|
|
||
| print("get sequence IDs of small set") | ||
| small_ids = set() | ||
| progress = tqdm(text_only_dataset_small, file=("/dev/null", "w")) | ||
| for i, entry in enumerate(progress): | ||
| if i % 100 == 0: | ||
| print(progress) | ||
| small_ids.add(entry["ID"]) | ||
|
|
||
| print("start corpus creation") | ||
| corpus = Corpus() | ||
| corpus.name = "loquacious-train-medium" | ||
| corpus_wo_small = Corpus() | ||
| corpus_wo_small.name = "loquacious-train-medium-wo-small" | ||
| progress = tqdm(text_only_dataset_medium, file=open("/dev/null", "w")) | ||
| for i, entry in enumerate(progress): | ||
| if i % 1000 == 0: | ||
| print(progress) | ||
| recording = create_recording_from_entry(entry, self.out_dir.get_path()) | ||
| corpus.add_recording(recording) | ||
| if entry["ID"] not in small_ids: | ||
| corpus_wo_small.add_recording(recording) | ||
|
|
||
| corpus.dump(self.out_corpus.get_path()) | ||
| corpus_wo_small.dump(self.out_corpus_wo_small.get_path()) | ||
|
|
||
|
|
||
| class PrepareLoquaciousTestDatasetsJob(PrepareLoquaciousDatasetJob): | ||
| """ | ||
| Prepare the Loquacious dataset from HuggingFace. | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| hf_home_dir: Path, | ||
| ): | ||
| self.hf_home_dir = hf_home_dir | ||
|
|
||
| self.out_dev_all = self.output_path("loquacious_dev_all.xml.gz") | ||
| self.out_test_all = self.output_path("loquacious_test_all.xml.gz") | ||
| self.out_dev_librispeech = self.output_path("loquacious_dev_librispeech.xml.gz") | ||
| self.out_test_librispeech = self.output_path("loquacious_test_librispeech.xml.gz") | ||
| self.out_dev_commonvoice = self.output_path("loquacious_dev_commonvoice.xml.gz") | ||
| self.out_test_commonvoice = self.output_path("loquacious_test_commonvoice.xml.gz") | ||
| self.out_dev_voxpopuli = self.output_path("loquacious_dev_voxpopuli.xml.gz") | ||
| self.out_test_voxpopuli = self.output_path("loquacious_test_voxpopuli.xml.gz") | ||
| self.out_dev_yodas = self.output_path("loquacious_dev_yodas.xml.gz") | ||
| self.out_test_yodas = self.output_path("loquacious_test_yodas.xml.gz") | ||
|
|
||
| self.out_dev_corpora = { | ||
| "all": self.out_dev_all, | ||
| "librispeech": self.out_dev_librispeech, | ||
| "commonvoice": self.out_dev_commonvoice, | ||
| "voxpopuli": self.out_dev_voxpopuli, | ||
| "yodas": self.out_dev_yodas, | ||
| } | ||
|
|
||
| self.out_test_corpora = { | ||
| "all": self.out_test_all, | ||
| "librispeech": self.out_test_librispeech, | ||
| "commonvoice": self.out_test_commonvoice, | ||
| "voxpopuli": self.out_test_voxpopuli, | ||
| "yodas": self.out_test_yodas, | ||
| } | ||
|
|
||
| self.out_dir = self.output_path("audio", directory=True) | ||
|
|
||
| def tasks(self): | ||
| yield Task("run", rqmt={"cpu": 16, "mem": 32, "time": 4}) | ||
|
|
||
| def run(self): | ||
| os.environ["HF_HOME"] = self.hf_home_dir.get_path() | ||
| from datasets import load_dataset | ||
|
|
||
| dataset_dev = load_dataset( | ||
| path="speechbrain/LoquaciousSet", | ||
| name="small", | ||
| split="dev", | ||
| num_proc=8, | ||
| ) | ||
| dataset_test = load_dataset( | ||
| path="speechbrain/LoquaciousSet", | ||
| name="small", | ||
| split="test", | ||
| num_proc=8, | ||
| ) | ||
| print("extract audio") | ||
| text_only_dataset_dev = dataset_dev.map( | ||
| extract_audio_from_text, | ||
| fn_kwargs={"output_path": self.out_dir.get_path()}, | ||
| num_proc=8, | ||
| load_from_cache_file=False, | ||
| ) | ||
| text_only_dataset_test = dataset_test.map( | ||
| extract_audio_from_text, | ||
| fn_kwargs={"output_path": self.out_dir.get_path()}, | ||
| num_proc=8, | ||
| load_from_cache_file=False, | ||
| ) | ||
|
|
||
| print("start corpus creation") | ||
| corpus_keys = [ | ||
| "all", | ||
| "librispeech", | ||
| "commonvoice", | ||
| "voxpopuli", | ||
| "yodas", | ||
| ] | ||
| dev_corpora = {key: Corpus() for key in corpus_keys} | ||
| test_corpora = {key: Corpus() for key in corpus_keys} | ||
| for key, corpus in dev_corpora.items(): | ||
| corpus.name = f"loquacious-dev-{key}" | ||
| for key, corpus in test_corpora.items(): | ||
| corpus.name = f"loquacious-test-{key}" | ||
|
|
||
| for entry in tqdm(text_only_dataset_dev): | ||
| recording = create_recording_from_entry(entry, self.out_dir.get_path()) | ||
| dev_corpora["all"].add_recording(recording) | ||
| matched = False | ||
| for key, filter in filters.items(): | ||
| if filter.search(entry["ID"]): | ||
| matched = True | ||
| dev_corpora[key].add_recording(recording) | ||
| assert matched, f"no filter matched for {entry['ID']}" | ||
|
|
||
| for entry in tqdm(text_only_dataset_test): | ||
| recording = create_recording_from_entry(entry, self.out_dir.get_path()) | ||
| test_corpora["all"].add_recording(recording) | ||
| matched = False | ||
| for key, filter in filters.items(): | ||
| if filter.search(entry["ID"]): | ||
| matched = True | ||
| test_corpora[key].add_recording(recording) | ||
| assert matched, f"no filter matched for {entry['ID']}" | ||
|
|
||
| for key, dev_corpus in dev_corpora.items(): | ||
| dev_corpus.dump(self.out_dev_corpora[key].get_path()) | ||
| for key, test_corpus in test_corpora.items(): | ||
| test_corpus.dump(self.out_test_corpora[key].get_path()) | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I was checking some other examples.
What I also see:
["ffmpeg", "-y", "-f", "s16le", "-ar", "%i" % sr, "-i", "pipe:0", "-c:a", "libvorbis", "-q", "3.0", path](That's what you use for your TTS Ogg export.)
["ffmpeg", "-hide_banner", "-loglevel", "error", "-y", "-threads", "1", "-f", "s16le", "-ar", "%i" % sr, "-i", "pipe:0", "-c:a", "libvorbis", "-q", "3.0", path]Or in
i6_experiments.common.datasets.librispeech.corpus.get_bliss_corpus_dictandi6_experiments.common.datasets.tedlium2.corpus.get_bliss_corpus_dict(and many others), we use"output_format": "ogg", "codec": "libvorbis"andsample_rate=16000forBlissChangeEncodingJob. I wonder a bit about that: Here we don't specify the quality at all (neither-b:anor-q), as far as I can see?I have not seen any other example using
-b:a. This corresponds to thefixed_bitrateoption inBlissChangeEncodingJob.Using a fixed bitrate (ABR) (option
-b) seems suboptimal to me. A variable bitrate (VBR) (option-q) makes more sense?But I just see that
-q 3is already the default. And you said that the FFmpeg defaults are suboptimal? Maybe we should use-q 4or higher?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Oh, I just learned: If you don't pass
-c:a libvorbis, and you have some weird stripped down FFMpeg build which was build without libvorbis, then FFmpeg still provides a builtin vorbis encoder, so it can still generate ogg files, but the quality will just be (much?) lower.In some older setups, I did not use
-c:a libvorbis, but simplyffmpeg -i ... out...ogg. But I think in most of my environments, I always had my custom Linuxbrew ffmpeg installed, which should have libvorbis enabled.But now, at the RWTH HPC cluster, the FFmpeg from there (which is also only available after
module load FFmpeg), that one does not support libvorbis.