@@ -1051,7 +1051,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
10511051
10521052 - ``v`` - a free module element.
10531053
1054- OUTPUT: The vector times matrix product v\*A .
1054+ OUTPUT: The vector times matrix product ``v*A`` .
10551055
10561056 EXAMPLES::
10571057
@@ -1708,7 +1708,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
17081708 alternating matrix.
17091709
17101710 Return a pair ( F, C) such that the rows of C form a symplectic
1711- basis for self and F = C \ * self \ * C. transpose( ) .
1711+ basis for self and `` F = C * self * C. transpose( ) `` .
17121712
17131713 Raise a ValueError if self is not anti-symmetric, or self is not
17141714 alternating.
@@ -2003,18 +2003,22 @@ cdef class Matrix_integer_dense(Matrix_dense):
20032003 """
20042004 key = ' hnf-%s -%s ' % (include_zero_rows,transformation)
20052005 ans = self .fetch(key)
2006- if ans is not None : return ans
2006+ if ans is not None :
2007+ return ans
20072008
20082009 cdef Matrix_integer_dense H_m,w,U
20092010 cdef Py_ssize_t nr, nc, n, i, j
20102011 nr = self ._nrows
20112012 nc = self ._ncols
20122013 n = nr if nr >= nc else nc
20132014 if algorithm == ' default' :
2014- if transformation: algorithm = ' flint'
2015+ if transformation:
2016+ algorithm = ' flint'
20152017 else :
2016- if n < 75 : algorithm = ' pari0'
2017- else : algorithm = ' flint'
2018+ if n < 75 :
2019+ algorithm = ' pari0'
2020+ else :
2021+ algorithm = ' flint'
20182022 proof = get_proof_flag(proof, " linear_algebra" )
20192023 pivots = None
20202024
@@ -2252,7 +2256,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
22522256 [ 0 0 0]
22532257 """
22542258 p = self .fetch(' pivots' )
2255- if not p is None : return tuple (p)
2259+ if not p is None :
2260+ return tuple (p)
22562261
22572262 cdef Matrix_integer_dense E
22582263 E = self .echelon_form()
@@ -2446,8 +2451,10 @@ cdef class Matrix_integer_dense(Matrix_dense):
24462451 if not transformation:
24472452 return D
24482453
2449- if self ._ncols == 0 : v[0 ] = self .matrix_space(ncols = self ._nrows)(1 )
2450- if self ._nrows == 0 : v[1 ] = self .matrix_space(nrows = self ._ncols)(1 )
2454+ if self ._ncols == 0 :
2455+ v[0 ] = self .matrix_space(ncols = self ._nrows)(1 )
2456+ if self ._nrows == 0 :
2457+ v[1 ] = self .matrix_space(nrows = self ._ncols)(1 )
24512458
24522459 if self ._ncols == 0 :
24532460 # silly special cases for matrices with 0 columns (PARI has a unique empty matrix)
@@ -3594,7 +3601,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
35943601
35953602
35963603 ALGORITHM: The p-adic algorithm works by first finding a random
3597- vector v, then solving A \* x = v and taking the denominator
3604+ vector v, then solving `Ax = v` and taking the denominator
35983605 `d`. This gives a divisor of the determinant. Then we
35993606 compute `\d et( A) /d` using a multimodular algorithm and the
36003607 Hadamard bound, skipping primes that divide `d`.
@@ -3905,7 +3912,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
39053912 check that the matrix is invertible.
39063913
39073914
3908- OUTPUT: A, d such that A\ *self = d
3915+ OUTPUT: A, d such that ``A *self == d``
39093916
39103917
39113918 - ``A`` - a matrix over ZZ
@@ -3961,7 +3968,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
39613968
39623969 - ``self`` - an invertible matrix
39633970
3964- OUTPUT: A, d such that A\ *self = d
3971+ OUTPUT: A, d such that ``A *self == d``
39653972
39663973
39673974 - ``A`` - a matrix over ZZ
@@ -4242,8 +4249,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
42424249 def _solve_iml (self , Matrix_integer_dense B , right = True ):
42434250 """
42444251 Let A equal self be a square matrix. Given B return an integer
4245- matrix C and an integer d such that self C\ *A == d\*B if right is
4246- False or A\ *C == d\*B if right is True.
4252+ matrix C and an integer d such that self ``C *A == d*B`` if right is
4253+ False or ``A *C == d*B`` if right is True.
42474254
42484255 OUTPUT:
42494256
@@ -4408,8 +4415,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
44084415 def _solve_flint (self , Matrix_integer_dense B , right = True ):
44094416 """
44104417 Let A equal self be a square matrix. Given B return an integer
4411- matrix C and an integer d such that self C\ *A == d\*B if right is
4412- False or A\ *C == d\*B if right is True.
4418+ matrix C and an integer d such that self ``C *A == d*B`` if right is
4419+ False or ``A *C == d*B`` if right is True.
44134420
44144421 OUTPUT:
44154422
@@ -4564,7 +4571,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
45644571
45654572
45664573 If you put standard basis vectors in order at the pivot columns,
4567- and put the matrix ( 1/d) \* X everywhere else, then you get the
4574+ and put the matrix `` ( 1/d) * X`` everywhere else, then you get the
45684575 reduced row echelon form of self, without zero rows at the bottom.
45694576
45704577 .. NOTE::
@@ -4895,7 +4902,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
48954902 row_i = A.row(i)
48964903 row_n = A.row(n)
48974904
4898- ag = a// g; bg = b// g
4905+ ag = a// g
4906+ bg = b// g
48994907
49004908 new_top = s* row_i + t* row_n
49014909 new_bot = bg* row_i - ag* row_n
@@ -4953,7 +4961,7 @@ cdef class Matrix_integer_dense(Matrix_dense):
49534961 INPUT:
49544962
49554963 - ``D`` -- a small integer that is assumed to be a
4956- multiple of 2\ *det(self)
4964+ multiple of ``2 *det(self)``
49574965
49584966 OUTPUT:
49594967
0 commit comments