@@ -4870,9 +4870,23 @@ def bigraded_betti_numbers(self, base_ring=ZZ, verbose=False):
4870
4870
4871
4871
sage: X = SimplicialComplex([[0,1],[1,2],[1,3],[2,3]])
4872
4872
sage: Y = SimplicialComplex([[1,2,3],[1,2,4],[3,5],[4,5]])
4873
- sage: sorted(X.bigraded_betti_numbers().items(), reverse=True) # needs sage.modules
4873
+ sage: sorted(X.bigraded_betti_numbers(base_ring=QQ ).items(), reverse=True)
4874
4874
[((0, 0), 1), ((-1, 6), 1), ((-1, 4), 2), ((-2, 8), 1), ((-2, 6), 1)]
4875
- sage: sorted(Y.bigraded_betti_numbers(base_ring=QQ).items(), reverse=True) # needs sage.modules
4875
+ sage: sorted(Y.bigraded_betti_numbers(verbose=True).items(), reverse=True)
4876
+ (-1, 4): Non-trivial homology Z in dimension 0 of the full
4877
+ subcomplex generated by a set of vertices (1, 5)
4878
+ (-1, 4): Non-trivial homology Z in dimension 0 of the full
4879
+ subcomplex generated by a set of vertices (2, 5)
4880
+ (-1, 4): Non-trivial homology Z in dimension 0 of the full
4881
+ subcomplex generated by a set of vertices (3, 4)
4882
+ (-2, 6): Non-trivial homology Z in dimension 0 of the full
4883
+ subcomplex generated by a set of vertices (1, 2, 5)
4884
+ (-2, 8): Non-trivial homology Z in dimension 1 of the full
4885
+ subcomplex generated by a set of vertices (1, 3, 4, 5)
4886
+ (-2, 8): Non-trivial homology Z in dimension 1 of the full
4887
+ subcomplex generated by a set of vertices (2, 3, 4, 5)
4888
+ (-3, 10): Non-trivial homology Z in dimension 1 of the full
4889
+ subcomplex generated by a set of vertices (1, 2, 3, 4, 5)
4876
4890
[((0, 0), 1), ((-1, 4), 3), ((-2, 8), 2), ((-2, 6), 1), ((-3, 10), 1)]
4877
4891
4878
4892
If we wish to view them in a form of a table, it is
@@ -4927,7 +4941,7 @@ def bigraded_betti_numbers(self, base_ring=ZZ, verbose=False):
4927
4941
B [ind ] = ZZ .zero ()
4928
4942
B [ind ] += len (H [j - k - 1 ].gens ())
4929
4943
if verbose :
4930
- print ("Non-trivial homology {} in dimension {} of the full subcomplex generated by a set of vertices {}" .format (H [j - k - 1 ], j - k - 1 , x ))
4944
+ print ("{}: Non-trivial homology {} in dimension {} of the full subcomplex generated by a set of vertices {}" .format (ind , H [j - k - 1 ], j - k - 1 , x ))
4931
4945
4932
4946
self ._bbn [base_ring ] = B
4933
4947
self ._bbn_all_computed .add (base_ring )
0 commit comments