|
1 | 1 |
|
2 | 2 | from .calculus import maxima as maxima_calculus
|
3 | 3 | from .calculus import (laplace, inverse_laplace,
|
4 |
| - limit, lim) |
| 4 | + limit, lim) |
5 | 5 |
|
6 | 6 | from .integration import numerical_integral, monte_carlo_integral
|
7 | 7 | integral_numerical = numerical_integral
|
8 | 8 |
|
9 | 9 | from .interpolation import spline, Spline
|
10 | 10 |
|
11 | 11 | from .functional import (diff, derivative,
|
12 |
| - expand, |
13 |
| - taylor, simplify) |
| 12 | + expand, |
| 13 | + taylor, simplify) |
14 | 14 |
|
15 |
| -from .functions import (wronskian,jacobian) |
| 15 | +from .functions import (wronskian, jacobian) |
16 | 16 |
|
17 | 17 | from .ode import ode_solver, ode_system
|
18 | 18 |
|
19 | 19 | from .desolvers import (desolve, desolve_laplace, desolve_system,
|
20 |
| - eulers_method, eulers_method_2x2, |
21 |
| - eulers_method_2x2_plot, desolve_rk4, desolve_system_rk4, |
22 |
| - desolve_odeint, desolve_mintides, desolve_tides_mpfr) |
| 20 | + eulers_method, eulers_method_2x2, |
| 21 | + eulers_method_2x2_plot, desolve_rk4, desolve_system_rk4, |
| 22 | + desolve_odeint, desolve_mintides, desolve_tides_mpfr) |
23 | 23 |
|
24 | 24 | from .var import (var, function, clear_vars)
|
25 | 25 |
|
26 | 26 | from .transforms.all import *
|
27 | 27 |
|
28 | 28 | # We lazy_import the following modules since they import numpy which slows down sage startup
|
29 | 29 | from sage.misc.lazy_import import lazy_import
|
30 |
| -lazy_import("sage.calculus.riemann",["Riemann_Map"]) |
31 |
| -lazy_import("sage.calculus.interpolators",["polygon_spline","complex_cubic_spline"]) |
| 30 | +lazy_import("sage.calculus.riemann", ["Riemann_Map"]) |
| 31 | +lazy_import("sage.calculus.interpolators", ["polygon_spline", "complex_cubic_spline"]) |
32 | 32 |
|
33 | 33 | from sage.modules.free_module_element import vector
|
34 | 34 | from sage.matrix.constructor import matrix
|
@@ -77,21 +77,21 @@ def symbolic_expression(x):
|
77 | 77 |
|
78 | 78 | If ``x`` is a list or tuple, create a vector of symbolic expressions::
|
79 | 79 |
|
80 |
| - sage: v=symbolic_expression([x,1]); v |
| 80 | + sage: v = symbolic_expression([x,1]); v |
81 | 81 | (x, 1)
|
82 | 82 | sage: v.base_ring()
|
83 | 83 | Symbolic Ring
|
84 |
| - sage: v=symbolic_expression((x,1)); v |
| 84 | + sage: v = symbolic_expression((x,1)); v |
85 | 85 | (x, 1)
|
86 | 86 | sage: v.base_ring()
|
87 | 87 | Symbolic Ring
|
88 |
| - sage: v=symbolic_expression((3,1)); v |
| 88 | + sage: v = symbolic_expression((3,1)); v |
89 | 89 | (3, 1)
|
90 | 90 | sage: v.base_ring()
|
91 | 91 | Symbolic Ring
|
92 | 92 | sage: E = EllipticCurve('15a'); E
|
93 | 93 | Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
|
94 |
| - sage: v=symbolic_expression([E,E]); v |
| 94 | + sage: v = symbolic_expression([E,E]); v |
95 | 95 | (x*y + y^2 + y == x^3 + x^2 - 10*x - 10, x*y + y^2 + y == x^3 + x^2 - 10*x - 10)
|
96 | 96 | sage: v.base_ring()
|
97 | 97 | Symbolic Ring
|
@@ -229,4 +229,5 @@ def symbolic_expression(x):
|
229 | 229 | return SR(result).function(*vars)
|
230 | 230 | return SR(x)
|
231 | 231 |
|
| 232 | + |
232 | 233 | from . import desolvers
|
0 commit comments