|
331 | 331 | For the user convenience, Kac's notations for twisted affine types are
|
332 | 332 | automatically translated into the previous ones::
|
333 | 333 |
|
| 334 | + sage: # needs sage.graphs |
334 | 335 | sage: CartanType(["A", 9, 2])
|
335 | 336 | ['B', 5, 1]^*
|
336 |
| - sage: CartanType(["A", 9, 2]).dynkin_diagram() # needs sage.graphs |
| 337 | + sage: CartanType(["A", 9, 2]).dynkin_diagram() |
337 | 338 | O 0
|
338 | 339 | |
|
339 | 340 | |
|
340 | 341 | O---O---O---O=<=O
|
341 | 342 | 1 2 3 4 5
|
342 | 343 | B5~*
|
343 |
| - sage: CartanType(["A", 10, 2]).dynkin_diagram() # needs sage.graphs |
| 344 | + sage: CartanType(["A", 10, 2]).dynkin_diagram() |
344 | 345 | O=<=O---O---O---O=<=O
|
345 | 346 | 0 1 2 3 4 5
|
346 | 347 | BC5~
|
347 |
| - sage: CartanType(["D", 5, 2]).dynkin_diagram() # needs sage.graphs |
| 348 | + sage: CartanType(["D", 5, 2]).dynkin_diagram() |
348 | 349 | O=<=O---O---O=>=O
|
349 | 350 | 0 1 2 3 4
|
350 | 351 | C4~*
|
351 |
| - sage: CartanType(["D", 4, 3]).dynkin_diagram() # needs sage.graphs |
| 352 | + sage: CartanType(["D", 4, 3]).dynkin_diagram() |
352 | 353 | 3
|
353 | 354 | O=>=O---O
|
354 | 355 | 2 1 0
|
355 | 356 | G2~* relabelled by {0: 0, 1: 2, 2: 1}
|
356 |
| - sage: CartanType(["E", 6, 2]).dynkin_diagram() # needs sage.graphs |
| 357 | + sage: CartanType(["E", 6, 2]).dynkin_diagram() |
357 | 358 | O---O---O=<=O---O
|
358 | 359 | 0 1 2 3 4
|
359 | 360 | F4~*
|
360 | 361 |
|
361 | 362 | Additionally one can set the notation option to use Kac's notation::
|
362 | 363 |
|
| 364 | + sage: # needs sage.graphs |
363 | 365 | sage: CartanType.options['notation'] = 'Kac'
|
364 | 366 | sage: CartanType(["A", 9, 2])
|
365 | 367 | ['A', 9, 2]
|
366 |
| - sage: CartanType(["A", 9, 2]).dynkin_diagram() # needs sage.graphs |
| 368 | + sage: CartanType(["A", 9, 2]).dynkin_diagram() |
367 | 369 | O 0
|
368 | 370 | |
|
369 | 371 | |
|
370 | 372 | O---O---O---O=<=O
|
371 | 373 | 1 2 3 4 5
|
372 | 374 | A9^2
|
373 |
| - sage: CartanType(["A", 10, 2]).dynkin_diagram() # needs sage.graphs |
| 375 | + sage: CartanType(["A", 10, 2]).dynkin_diagram() |
374 | 376 | O=<=O---O---O---O=<=O
|
375 | 377 | 0 1 2 3 4 5
|
376 | 378 | A10^2
|
377 |
| - sage: CartanType(["D", 5, 2]).dynkin_diagram() # needs sage.graphs |
| 379 | + sage: CartanType(["D", 5, 2]).dynkin_diagram() |
378 | 380 | O=<=O---O---O=>=O
|
379 | 381 | 0 1 2 3 4
|
380 | 382 | D5^2
|
381 |
| - sage: CartanType(["D", 4, 3]).dynkin_diagram() # needs sage.graphs |
| 383 | + sage: CartanType(["D", 4, 3]).dynkin_diagram() |
382 | 384 | 3
|
383 | 385 | O=>=O---O
|
384 | 386 | 2 1 0
|
385 | 387 | D4^3
|
386 |
| - sage: CartanType(["E", 6, 2]).dynkin_diagram() # needs sage.graphs |
| 388 | + sage: CartanType(["E", 6, 2]).dynkin_diagram() |
387 | 389 | O---O---O=<=O---O
|
388 | 390 | 0 1 2 3 4
|
389 | 391 | E6^2
|
@@ -1415,15 +1417,17 @@ def is_simply_laced(self):
|
1415 | 1417 | [['C', 1], True], [['C', 5], False],
|
1416 | 1418 | [['D', 2], True], [['D', 3], True], [['D', 5], True],
|
1417 | 1419 | [['E', 6], True], [['E', 7], True], [['E', 8], True],
|
1418 |
| - [['F', 4], False], [['G', 2], False], [['I', 5], False], [['H', 3], False], [['H', 4], False], |
| 1420 | + [['F', 4], False], [['G', 2], False], [['I', 5], False], |
| 1421 | + [['H', 3], False], [['H', 4], False], |
1419 | 1422 | [['A', 1, 1], False], [['A', 5, 1], True],
|
1420 | 1423 | [['B', 1, 1], False], [['B', 5, 1], False],
|
1421 | 1424 | [['C', 1, 1], False], [['C', 5, 1], False],
|
1422 | 1425 | [['D', 3, 1], True], [['D', 5, 1], True],
|
1423 | 1426 | [['E', 6, 1], True], [['E', 7, 1], True], [['E', 8, 1], True],
|
1424 | 1427 | [['F', 4, 1], False], [['G', 2, 1], False],
|
1425 | 1428 | [['BC', 1, 2], False], [['BC', 5, 2], False],
|
1426 |
| - [['B', 5, 1]^*, False], [['C', 4, 1]^*, False], [['F', 4, 1]^*, False], [['G', 2, 1]^*, False], |
| 1429 | + [['B', 5, 1]^*, False], [['C', 4, 1]^*, False], |
| 1430 | + [['F', 4, 1]^*, False], [['G', 2, 1]^*, False], |
1427 | 1431 | [['BC', 1, 2]^*, False], [['BC', 5, 2]^*, False]]
|
1428 | 1432 | """
|
1429 | 1433 | return False
|
@@ -1937,7 +1941,7 @@ def is_untwisted_affine(self):
|
1937 | 1941 |
|
1938 | 1942 | sage: CartanType(['A', 3, 1]).is_untwisted_affine()
|
1939 | 1943 | True
|
1940 |
| - sage: CartanType(['A', 3, 1]).dual().is_untwisted_affine() # this one is self dual! |
| 1944 | + sage: CartanType(['A', 3, 1]).dual().is_untwisted_affine() # this one is self dual! |
1941 | 1945 | True
|
1942 | 1946 | sage: CartanType(['B', 3, 1]).dual().is_untwisted_affine()
|
1943 | 1947 | False
|
@@ -2313,8 +2317,8 @@ def translation_factors(self):
|
2313 | 2317 | as unit vector on the `x`-axis, and the projection `\omega_2`
|
2314 | 2318 | at level 0 of `\Lambda_2` as unit vector of the `y`-axis::
|
2315 | 2319 |
|
2316 |
| - sage: omega1 = Lambda[1]-2*Lambda[0] |
2317 |
| - sage: omega2 = Lambda[2]-2*Lambda[0] |
| 2320 | + sage: omega1 = Lambda[1] - 2*Lambda[0] |
| 2321 | + sage: omega2 = Lambda[2] - 2*Lambda[0] |
2318 | 2322 | sage: omega1.level(), omega2.level() # needs sage.graphs
|
2319 | 2323 | (0, 0)
|
2320 | 2324 |
|
|
0 commit comments