@@ -448,10 +448,10 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
448
448
(t - 1)/(q*t - 1)*x0 + x1
449
449
sage: NS.E([0,1]) # needs sage.groups
450
450
(t - 1)/(q*t - 1)*x0 + x1
451
- sage: NS.E([2,0]) # needs sage.groups
452
- x0^2 + (q*t - q)/(q*t - 1)*x0*x1
453
451
sage: EE([2,0])
454
452
x0^2 + (q*t - q)/(q*t - 1)*x0*x1
453
+ sage: NS.E([2,0]) # needs sage.groups
454
+ x0^2 + (q*t - q)/(q*t - 1)*x0*x1
455
455
456
456
The same, directly in the ambient lattice with several shifts::
457
457
@@ -681,13 +681,15 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
681
681
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
682
682
sage: omega = E.keys().fundamental_weights()
683
683
sage: La = R.weight_space().basis()
684
- sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) # needs sage.combinat
685
- sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s), needs sage.combinat
684
+
685
+ sage: # needs sage.combinat
686
+ sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
687
+ sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s)
686
688
....: == LS.one_dimensional_configuration_sum(q))
687
689
True
688
- sage: B = crystals.KirillovReshetikhin(['B',3,1],1,1) # needs sage.combinat
689
- sage: T = crystals.TensorProduct(B,B) # needs sage.combinat
690
- sage: (T.one_dimensional_configuration_sum(q) # long time (2s) # needs sage.combinat
690
+ sage: B = crystals.KirillovReshetikhin(['B',3,1],1,1)
691
+ sage: T = crystals.TensorProduct(B,B)
692
+ sage: (T.one_dimensional_configuration_sum(q) # long time (2s)
691
693
....: == LS.one_dimensional_configuration_sum(q))
692
694
True
693
695
@@ -710,12 +712,14 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
710
712
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
711
713
sage: omega = E.keys().fundamental_weights()
712
714
sage: La = R.weight_space().basis()
713
- sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) # needs sage.combinat
714
- sage: g = E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (30s)
715
- sage: f = LS.one_dimensional_configuration_sum(q) # long time (1.5s), needs sage.combinat
716
- sage: P = g.support()[0].parent() # long time # needs sage.combinat
717
- sage: B = P.algebra(q.parent()) # long time # needs sage.combinat
718
- sage: sum(p[1]*B(P(p[0])) for p in f) == g # long time # needs sage.combinat
715
+
716
+ sage: # long time, needs sage.combinat
717
+ sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
718
+ sage: g = E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # 30s
719
+ sage: f = LS.one_dimensional_configuration_sum(q) # 1.5s
720
+ sage: P = g.support()[0].parent()
721
+ sage: B = P.algebra(q.parent())
722
+ sage: sum(p[1]*B(P(p[0])) for p in f) == g
719
723
True
720
724
721
725
::
@@ -728,12 +732,14 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
728
732
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
729
733
sage: omega = E.keys().fundamental_weights()
730
734
sage: La = R.weight_space().basis()
731
- sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) # needs sage.combinat
732
- sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (20s), not tested, needs sage.combinat
735
+
736
+ sage: # needs sage.combinat
737
+ sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
738
+ sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (20s), not tested
733
739
....: == LS.one_dimensional_configuration_sum(q)
734
740
True
735
- sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1] + La[2]) # needs sage.combinat
736
- sage: (E[-omega[1]-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # not tested, long time (23s)
741
+ sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1] + La[2])
742
+ sage: (E[-omega[1]-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s), not tested
737
743
....: == LS.one_dimensional_configuration_sum(q))
738
744
True
739
745
@@ -1588,17 +1594,18 @@ def twist(self, mu, i):
1588
1594
1589
1595
EXAMPLES::
1590
1596
1591
- sage: W = WeylGroup(["B",3]) # needs sage.libs.gap
1592
- sage: W.element_class._repr_ = lambda x: "".join(str(i) # needs sage.libs.gap
1597
+ sage: # needs sage.libs.gap
1598
+ sage: W = WeylGroup(["B",3])
1599
+ sage: W.element_class._repr_ = lambda x: "".join(str(i)
1593
1600
....: for i in x.reduced_word())
1594
1601
sage: K = QQ['q1,q2']
1595
1602
sage: q1, q2 = K.gens()
1596
- sage: KW = W.algebra(K) # needs sage.libs.gap
1597
- sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True) # needs sage.libs.gap
1598
- sage: E = T.Y_eigenvectors() # needs sage.libs.gap
1599
- sage: w = W.an_element(); w # needs sage.libs.gap
1603
+ sage: KW = W.algebra(K)
1604
+ sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
1605
+ sage: E = T.Y_eigenvectors()
1606
+ sage: w = W.an_element(); w
1600
1607
123
1601
- sage: E.twist(w,1) # needs sage.libs.gap
1608
+ sage: E.twist(w,1)
1602
1609
1231
1603
1610
"""
1604
1611
return mu .simple_reflection (i )
@@ -1763,13 +1770,15 @@ def eigenvalue_experimental(self, mu, l):
1763
1770
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
1764
1771
sage: L0 = E.keys()
1765
1772
sage: alpha = L.simple_coroots()
1766
- sage: E.eigenvalue(L0((0,0)), alpha[0]) # not checked # not tested
1773
+
1774
+ sage: # not tested
1775
+ sage: E.eigenvalue(L0((0,0)), alpha[0]) # not checked
1767
1776
q/t
1768
- sage: E.eigenvalue(L0((1,0)), alpha[1]) # What Mark got by hand # not tested
1777
+ sage: E.eigenvalue(L0((1,0)), alpha[1]) # What Mark got by hand
1769
1778
q
1770
- sage: E.eigenvalue(L0((1,0)), alpha[2]) # not checked # not tested
1779
+ sage: E.eigenvalue(L0((1,0)), alpha[2]) # not checked
1771
1780
t
1772
- sage: E.eigenvalue(L0((1,0)), alpha[0]) # not checked # not tested
1781
+ sage: E.eigenvalue(L0((1,0)), alpha[0]) # not checked
1773
1782
1
1774
1783
1775
1784
sage: L = RootSystem("B2~*").ambient_space()
0 commit comments