Skip to content

Commit 68d31db

Browse files
author
Matthias Koeppe
committed
sage.combinat.root_system: Use more block tags
1 parent 225acf7 commit 68d31db

File tree

1 file changed

+37
-28
lines changed

1 file changed

+37
-28
lines changed

src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py

Lines changed: 37 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -448,10 +448,10 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
448448
(t - 1)/(q*t - 1)*x0 + x1
449449
sage: NS.E([0,1]) # needs sage.groups
450450
(t - 1)/(q*t - 1)*x0 + x1
451-
sage: NS.E([2,0]) # needs sage.groups
452-
x0^2 + (q*t - q)/(q*t - 1)*x0*x1
453451
sage: EE([2,0])
454452
x0^2 + (q*t - q)/(q*t - 1)*x0*x1
453+
sage: NS.E([2,0]) # needs sage.groups
454+
x0^2 + (q*t - q)/(q*t - 1)*x0*x1
455455
456456
The same, directly in the ambient lattice with several shifts::
457457
@@ -681,13 +681,15 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
681681
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
682682
sage: omega = E.keys().fundamental_weights()
683683
sage: La = R.weight_space().basis()
684-
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) # needs sage.combinat
685-
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s), needs sage.combinat
684+
685+
sage: # needs sage.combinat
686+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
687+
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s)
686688
....: == LS.one_dimensional_configuration_sum(q))
687689
True
688-
sage: B = crystals.KirillovReshetikhin(['B',3,1],1,1) # needs sage.combinat
689-
sage: T = crystals.TensorProduct(B,B) # needs sage.combinat
690-
sage: (T.one_dimensional_configuration_sum(q) # long time (2s) # needs sage.combinat
690+
sage: B = crystals.KirillovReshetikhin(['B',3,1],1,1)
691+
sage: T = crystals.TensorProduct(B,B)
692+
sage: (T.one_dimensional_configuration_sum(q) # long time (2s)
691693
....: == LS.one_dimensional_configuration_sum(q))
692694
True
693695
@@ -710,12 +712,14 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
710712
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
711713
sage: omega = E.keys().fundamental_weights()
712714
sage: La = R.weight_space().basis()
713-
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) # needs sage.combinat
714-
sage: g = E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (30s)
715-
sage: f = LS.one_dimensional_configuration_sum(q) # long time (1.5s), needs sage.combinat
716-
sage: P = g.support()[0].parent() # long time # needs sage.combinat
717-
sage: B = P.algebra(q.parent()) # long time # needs sage.combinat
718-
sage: sum(p[1]*B(P(p[0])) for p in f) == g # long time # needs sage.combinat
715+
716+
sage: # long time, needs sage.combinat
717+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
718+
sage: g = E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # 30s
719+
sage: f = LS.one_dimensional_configuration_sum(q) # 1.5s
720+
sage: P = g.support()[0].parent()
721+
sage: B = P.algebra(q.parent())
722+
sage: sum(p[1]*B(P(p[0])) for p in f) == g
719723
True
720724
721725
::
@@ -728,12 +732,14 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
728732
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
729733
sage: omega = E.keys().fundamental_weights()
730734
sage: La = R.weight_space().basis()
731-
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) # needs sage.combinat
732-
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (20s), not tested, needs sage.combinat
735+
736+
sage: # needs sage.combinat
737+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
738+
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (20s), not tested
733739
....: == LS.one_dimensional_configuration_sum(q)
734740
True
735-
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1] + La[2]) # needs sage.combinat
736-
sage: (E[-omega[1]-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # not tested, long time (23s)
741+
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1] + La[2])
742+
sage: (E[-omega[1]-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s), not tested
737743
....: == LS.one_dimensional_configuration_sum(q))
738744
True
739745
@@ -1588,17 +1594,18 @@ def twist(self, mu, i):
15881594
15891595
EXAMPLES::
15901596
1591-
sage: W = WeylGroup(["B",3]) # needs sage.libs.gap
1592-
sage: W.element_class._repr_ = lambda x: "".join(str(i) # needs sage.libs.gap
1597+
sage: # needs sage.libs.gap
1598+
sage: W = WeylGroup(["B",3])
1599+
sage: W.element_class._repr_ = lambda x: "".join(str(i)
15931600
....: for i in x.reduced_word())
15941601
sage: K = QQ['q1,q2']
15951602
sage: q1, q2 = K.gens()
1596-
sage: KW = W.algebra(K) # needs sage.libs.gap
1597-
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True) # needs sage.libs.gap
1598-
sage: E = T.Y_eigenvectors() # needs sage.libs.gap
1599-
sage: w = W.an_element(); w # needs sage.libs.gap
1603+
sage: KW = W.algebra(K)
1604+
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
1605+
sage: E = T.Y_eigenvectors()
1606+
sage: w = W.an_element(); w
16001607
123
1601-
sage: E.twist(w,1) # needs sage.libs.gap
1608+
sage: E.twist(w,1)
16021609
1231
16031610
"""
16041611
return mu.simple_reflection(i)
@@ -1763,13 +1770,15 @@ def eigenvalue_experimental(self, mu, l):
17631770
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
17641771
sage: L0 = E.keys()
17651772
sage: alpha = L.simple_coroots()
1766-
sage: E.eigenvalue(L0((0,0)), alpha[0]) # not checked # not tested
1773+
1774+
sage: # not tested
1775+
sage: E.eigenvalue(L0((0,0)), alpha[0]) # not checked
17671776
q/t
1768-
sage: E.eigenvalue(L0((1,0)), alpha[1]) # What Mark got by hand # not tested
1777+
sage: E.eigenvalue(L0((1,0)), alpha[1]) # What Mark got by hand
17691778
q
1770-
sage: E.eigenvalue(L0((1,0)), alpha[2]) # not checked # not tested
1779+
sage: E.eigenvalue(L0((1,0)), alpha[2]) # not checked
17711780
t
1772-
sage: E.eigenvalue(L0((1,0)), alpha[0]) # not checked # not tested
1781+
sage: E.eigenvalue(L0((1,0)), alpha[0]) # not checked
17731782
1
17741783
17751784
sage: L = RootSystem("B2~*").ambient_space()

0 commit comments

Comments
 (0)