@@ -37,7 +37,7 @@ class qCommutingPolynomials_generic(CombinatorialFreeModule):
37
37
Base class for algebra of `q`-commuting (Laurent, etc.) polynomials.
38
38
39
39
Let `R` be a commutative ring, and fix an element `q \in R`. Let
40
- B = (B_{xy})_{x,y \in I}` be a skew-symmetric bilinear form with
40
+ ` B = (B_{xy})_{x,y \in I}` be a skew-symmetric bilinear form with
41
41
index set `I`. Let `R[I]_{q,B}` denote the polynomial ring in the variables
42
42
`I` such that we have the `q`-*commuting* relation for `x, y \in I`:
43
43
@@ -222,7 +222,7 @@ class qCommutingPolynomials(qCommutingPolynomials_generic):
222
222
The algebra of `q`-commuting polynomials.
223
223
224
224
Let `R` be a commutative ring, and fix an element `q \in R`. Let
225
- B = (B_{xy})_{x,y \in I}` be a skew-symmetric bilinear form with
225
+ ` B = (B_{xy})_{x,y \in I}` be a skew-symmetric bilinear form with
226
226
index set `I`. Let `R[I]_{q,B}` denote the polynomial ring in the variables
227
227
`I` such that we have the `q`-*commuting* relation for `x, y \in I`:
228
228
@@ -404,7 +404,7 @@ class qCommutingLaurentPolynomials(qCommutingPolynomials_generic):
404
404
The algebra of `q`-commuting Laurent polynomials.
405
405
406
406
Let `R` be a commutative ring, and fix an element `q \in R`. Let
407
- B = (B_{xy})_{x,y \in I}` be a skew-symmetric bilinear form with
407
+ ` B = (B_{xy})_{x,y \in I}` be a skew-symmetric bilinear form with
408
408
index set `I`. Let `R[I]_{q,B}` denote the Laurent polynomial ring in
409
409
the variables `I` such that we have the `q`-*commuting* relation
410
410
for `x, y \in I`:
0 commit comments