@@ -90,14 +90,15 @@ class FiniteGCAlgebra(CombinatorialFreeModule, Algebra):
90
90
91
91
sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,2,3), max_degree=6)
92
92
sage: A
93
- Graded commutative algebra with generators ('x', 'y', 'z', 't') in degrees (1, 2, 2, 3) with maximal degree 6
93
+ Graded commutative algebra with generators ('x', 'y', 'z', 't')
94
+ in degrees (1, 2, 2, 3) with maximal degree 6
94
95
sage: t*x + x*t
95
96
0
96
97
sage: x^2
97
98
0
98
99
sage: x*t^2
99
100
0
100
- sage: x*y^2+ z*t
101
+ sage: x*y^2 + z*t
101
102
x*y^2 + z*t
102
103
103
104
The generators can be returned with :meth:`algebra_generators`::
@@ -115,7 +116,9 @@ class FiniteGCAlgebra(CombinatorialFreeModule, Algebra):
115
116
Depending on the context, the multiplication can be given a different
116
117
symbol::
117
118
118
- sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,6,6), max_degree=10, mul_symbol='⌣', mul_latex_symbol=r'\smile')
119
+ sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,6,6), max_degree=10,
120
+ ....: mul_symbol='⌣',
121
+ ....: mul_latex_symbol=r'\smile')
119
122
sage: x*y^2 + x*t
120
123
x⌣y^2 + x⌣t
121
124
sage: latex(x*y^2 - z*x)
@@ -127,7 +130,7 @@ class FiniteGCAlgebra(CombinatorialFreeModule, Algebra):
127
130
omitted, an instance of the class
128
131
:class:`sage.algebras.commutative_dga.GCAlgebra` is created instead::
129
132
130
- sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,6,6)) # needs sage.libs.singular
133
+ sage: A.<x,y,z,t> = GradedCommutativeAlgebra(QQ, degrees=(1,2,6,6))
131
134
sage: type(A)
132
135
<class 'sage.algebras.commutative_dga.GCAlgebra_with_category'>
133
136
0 commit comments