@@ -233,7 +233,7 @@ class IwahoriHeckeAlgebra(Parent, UniqueRepresentation):
233
233
234
234
sage: R.<q> = LaurentPolynomialRing(ZZ)
235
235
sage: H = IwahoriHeckeAlgebra('A3', q^2)
236
- sage: T= H.T(); Cp= H.Cp(); C= H.C()
236
+ sage: T = H.T(); Cp = H.Cp(); C = H.C()
237
237
sage: C(T[1])
238
238
q*C[1] + q^2
239
239
sage: elt = Cp(T[1,2,1]); elt
@@ -245,7 +245,7 @@ class IwahoriHeckeAlgebra(Parent, UniqueRepresentation):
245
245
246
246
sage: R.<q> = LaurentPolynomialRing(ZZ)
247
247
sage: H = IwahoriHeckeAlgebra('A3', q, -q^-1)
248
- sage: T= H.T(); Cp= H.Cp(); C= H.C()
248
+ sage: T = H.T(); Cp = H.Cp(); C = H.C()
249
249
sage: C(T[1])
250
250
C[1] + q
251
251
sage: elt = Cp(T[1,2,1]); elt
@@ -256,7 +256,7 @@ class IwahoriHeckeAlgebra(Parent, UniqueRepresentation):
256
256
In the group algebra, so that `(T_r-1)(T_r+1) = 0`::
257
257
258
258
sage: H = IwahoriHeckeAlgebra('A3', 1)
259
- sage: T= H.T(); Cp= H.Cp(); C= H.C()
259
+ sage: T = H.T(); Cp = H.Cp(); C = H.C()
260
260
sage: C(T[1])
261
261
C[1] + 1
262
262
sage: Cp(T[1,2,1])
@@ -270,7 +270,7 @@ class IwahoriHeckeAlgebra(Parent, UniqueRepresentation):
270
270
271
271
sage: R.<q>=LaurentPolynomialRing(ZZ)
272
272
sage: H = IwahoriHeckeAlgebra('A3', q)
273
- sage: C= H.C()
273
+ sage: C = H.C()
274
274
Traceback (most recent call last):
275
275
...
276
276
ValueError: the Kazhdan-Lusztig bases are defined only when -q_1*q_2 is a square
@@ -279,7 +279,7 @@ class IwahoriHeckeAlgebra(Parent, UniqueRepresentation):
279
279
280
280
sage: R.<v> = LaurentPolynomialRing(ZZ)
281
281
sage: H = IwahoriHeckeAlgebra(['A',2,1], v^2)
282
- sage: T= H.T(); Cp= H.Cp(); C= H.C()
282
+ sage: T = H.T(); Cp = H.Cp(); C = H.C()
283
283
sage: C(T[1,0,2])
284
284
v^3*C[1,0,2] + v^4*C[1,0] + v^4*C[0,2] + v^4*C[1,2]
285
285
+ v^5*C[0] + v^5*C[2] + v^5*C[1] + v^6
@@ -1621,8 +1621,8 @@ def hash_involution_on_basis(self, w):
1621
1621
1622
1622
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
1623
1623
sage: H = IwahoriHeckeAlgebra('A3', v**2)
1624
- sage: T= H.T()
1625
- sage: s= H.coxeter_group().simple_reflection(1)
1624
+ sage: T = H.T()
1625
+ sage: s = H.coxeter_group().simple_reflection(1)
1626
1626
sage: T.hash_involution_on_basis(s)
1627
1627
-(v^-2)*T[1]
1628
1628
sage: T[s].hash_involution()
@@ -1661,8 +1661,8 @@ def goldman_involution_on_basis(self, w):
1661
1661
1662
1662
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
1663
1663
sage: H = IwahoriHeckeAlgebra('A3', v**2)
1664
- sage: T= H.T()
1665
- sage: s= H.coxeter_group().simple_reflection(1)
1664
+ sage: T = H.T()
1665
+ sage: s = H.coxeter_group().simple_reflection(1)
1666
1666
sage: T.goldman_involution_on_basis(s)
1667
1667
-T[1] - (1-v^2)
1668
1668
sage: T[s].goldman_involution()
@@ -1836,8 +1836,8 @@ def to_T_basis(self, w):
1836
1836
1837
1837
EXAMPLES::
1838
1838
1839
- sage: H= IwahoriHeckeAlgebra("A3",1); Cp= H.Cp(); C= H.C()
1840
- sage: s= H.coxeter_group().simple_reflection(1)
1839
+ sage: H = IwahoriHeckeAlgebra("A3",1); Cp = H.Cp(); C = H.C()
1840
+ sage: s = H.coxeter_group().simple_reflection(1)
1841
1841
sage: C.to_T_basis(s)
1842
1842
T[1] - 1
1843
1843
sage: Cp.to_T_basis(s)
@@ -2032,8 +2032,8 @@ def hash_involution_on_basis(self, w):
2032
2032
2033
2033
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
2034
2034
sage: H = IwahoriHeckeAlgebra('A3', v**2)
2035
- sage: Cp= H.Cp()
2036
- sage: s= H.coxeter_group().simple_reflection(1)
2035
+ sage: Cp = H.Cp()
2036
+ sage: s = H.coxeter_group().simple_reflection(1)
2037
2037
sage: Cp.hash_involution_on_basis(s)
2038
2038
-Cp[1] + (v^-1+v)
2039
2039
sage: Cp[s].hash_involution()
@@ -2130,7 +2130,7 @@ def product_on_basis(self, w1, w2):
2130
2130
sage: # optional - coxeter3
2131
2131
sage: R.<v> = LaurentPolynomialRing(ZZ, 'v')
2132
2132
sage: W = CoxeterGroup('A3', implementation='coxeter3')
2133
- sage: H = IwahoriHeckeAlgebra(W, v**2); Cp= H.Cp()
2133
+ sage: H = IwahoriHeckeAlgebra(W, v**2); Cp = H.Cp()
2134
2134
sage: Cp.product_on_basis(W([1,2,1]), W([3,1]))
2135
2135
(v^-1+v)*Cp[1,2,1,3]
2136
2136
sage: Cp.product_on_basis(W([1,2,1]), W([3,1,2]))
@@ -2267,7 +2267,7 @@ def _decompose_into_generators(self, u):
2267
2267
2268
2268
sage: R.<v> = LaurentPolynomialRing(ZZ, 'v') # optional - coxeter3
2269
2269
sage: W = CoxeterGroup('A3', implementation='coxeter3') # optional - coxeter3
2270
- sage: H = IwahoriHeckeAlgebra(W, v**2); Cp= H.Cp() # optional - coxeter3
2270
+ sage: H = IwahoriHeckeAlgebra(W, v**2); Cp = H.Cp() # optional - coxeter3
2271
2271
2272
2272
When `u` is itself a generator `s`, the decomposition is trivial::
2273
2273
@@ -2440,8 +2440,8 @@ def hash_involution_on_basis(self, w):
2440
2440
2441
2441
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
2442
2442
sage: H = IwahoriHeckeAlgebra('A3', v**2)
2443
- sage: C= H.C()
2444
- sage: s= H.coxeter_group().simple_reflection(1)
2443
+ sage: C = H.C()
2444
+ sage: s = H.coxeter_group().simple_reflection(1)
2445
2445
sage: C.hash_involution_on_basis(s)
2446
2446
-C[1] - (v^-1+v)
2447
2447
sage: C[s].hash_involution()
@@ -2473,7 +2473,7 @@ class A(_Basis):
2473
2473
2474
2474
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
2475
2475
sage: H = IwahoriHeckeAlgebra('A3', v**2)
2476
- sage: A= H.A(); T= H.T()
2476
+ sage: A = H.A(); T = H.T()
2477
2477
sage: T(A[1])
2478
2478
T[1] + (1/2-1/2*v^2)
2479
2479
sage: T(A[1,2])
@@ -2526,8 +2526,8 @@ def to_T_basis(self, w):
2526
2526
EXAMPLES::
2527
2527
2528
2528
sage: R.<v> = LaurentPolynomialRing(QQ)
2529
- sage: H = IwahoriHeckeAlgebra('A3', v**2); A= H.A(); T= H.T()
2530
- sage: s= H.coxeter_group().simple_reflection(1)
2529
+ sage: H = IwahoriHeckeAlgebra('A3', v**2); A = H.A(); T = H.T()
2530
+ sage: s = H.coxeter_group().simple_reflection(1)
2531
2531
sage: A.to_T_basis(s)
2532
2532
T[1] + (1/2-1/2*v^2)
2533
2533
sage: T(A[1,2])
@@ -2550,8 +2550,8 @@ def goldman_involution_on_basis(self, w):
2550
2550
2551
2551
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
2552
2552
sage: H = IwahoriHeckeAlgebra('A3', v**2)
2553
- sage: A= H.A()
2554
- sage: s= H.coxeter_group().simple_reflection(1)
2553
+ sage: A = H.A()
2554
+ sage: s = H.coxeter_group().simple_reflection(1)
2555
2555
sage: A.goldman_involution_on_basis(s)
2556
2556
-A[1]
2557
2557
sage: A[1,2].goldman_involution()
@@ -2593,7 +2593,7 @@ class B(_Basis):
2593
2593
2594
2594
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
2595
2595
sage: H = IwahoriHeckeAlgebra('A3', v**2)
2596
- sage: A= H.A(); T= H.T(); Cp= H.Cp()
2596
+ sage: A = H.A(); T = H.T(); Cp = H.Cp()
2597
2597
sage: T(A[1])
2598
2598
T[1] + (1/2-1/2*v^2)
2599
2599
sage: T(A[1,2])
@@ -2659,8 +2659,8 @@ def to_T_basis(self, w):
2659
2659
EXAMPLES::
2660
2660
2661
2661
sage: R.<v> = LaurentPolynomialRing(QQ)
2662
- sage: H = IwahoriHeckeAlgebra('A3', v**2); B= H.B(); T= H.T()
2663
- sage: s= H.coxeter_group().simple_reflection(1)
2662
+ sage: H = IwahoriHeckeAlgebra('A3', v**2); B = H.B(); T = H.T()
2663
+ sage: s = H.coxeter_group().simple_reflection(1)
2664
2664
sage: B.to_T_basis(s)
2665
2665
T[1] + (1/2-1/2*v^2)
2666
2666
sage: T(B[1,2])
@@ -2687,8 +2687,8 @@ def goldman_involution_on_basis(self, w):
2687
2687
2688
2688
sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
2689
2689
sage: H = IwahoriHeckeAlgebra('A3', v**2)
2690
- sage: B= H.B()
2691
- sage: s= H.coxeter_group().simple_reflection(1)
2690
+ sage: B = H.B()
2691
+ sage: s = H.coxeter_group().simple_reflection(1)
2692
2692
sage: B.goldman_involution_on_basis(s)
2693
2693
-B[1]
2694
2694
sage: B[1,2].goldman_involution()
@@ -2822,8 +2822,8 @@ def _bar_on_coefficients(self, c):
2822
2822
EXAMPLES::
2823
2823
2824
2824
sage: R.<q>=LaurentPolynomialRing(ZZ)
2825
- sage: H= IwahoriHeckeAlgebra("A3",q^2)
2826
- sage: GH= H._generic_iwahori_hecke_algebra
2825
+ sage: H = IwahoriHeckeAlgebra("A3",q^2)
2826
+ sage: GH = H._generic_iwahori_hecke_algebra
2827
2827
sage: GH._bar_on_coefficients(GH.u_inv)
2828
2828
u
2829
2829
sage: GH._bar_on_coefficients(GH.v_inv)
@@ -2871,8 +2871,8 @@ def specialize_to(self, new_hecke):
2871
2871
EXAMPLES::
2872
2872
2873
2873
sage: R.<a,b>=LaurentPolynomialRing(ZZ,2)
2874
- sage: H= IwahoriHeckeAlgebra("A3",a^2,-b^2)
2875
- sage: GH= H._generic_iwahori_hecke_algebra
2874
+ sage: H = IwahoriHeckeAlgebra("A3",a^2,-b^2)
2875
+ sage: GH = H._generic_iwahori_hecke_algebra
2876
2876
sage: GH.T()(GH.C()[1])
2877
2877
(v^-1)*T[1] + (-u*v^-1)
2878
2878
sage: ( GH.T()(GH.C()[1]) ).specialize_to(H)
0 commit comments