@@ -183,7 +183,7 @@ class CoxeterMatrixGroup(UniqueRepresentation, FinitelyGeneratedMatrixGroup_gene
183
183
[2 3 1 3 3]
184
184
[2 2 3 1 2]
185
185
[2 2 3 2 1]
186
- sage: W = CoxeterGroup(['H',3], implementation="reflection"); W # needs sage.rings.number_field
186
+ sage: W = CoxeterGroup(['H',3], implementation="reflection"); W # needs sage.libs.gap sage. rings.number_field
187
187
Finite Coxeter group over
188
188
Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790?
189
189
with Coxeter matrix:
@@ -482,8 +482,8 @@ def order(self):
482
482
sage: W = CoxeterGroup([[1,3],[3,1]])
483
483
sage: W.order()
484
484
6
485
- sage: W = CoxeterGroup([[1,-1],[-1,1]])
486
- sage: W.order()
485
+ sage: W = CoxeterGroup([[1,-1],[-1,1]]) # needs sage.libs.gap
486
+ sage: W.order() # needs sage.libs.gap
487
487
+Infinity
488
488
"""
489
489
if self .is_finite ():
@@ -593,7 +593,7 @@ def positive_roots(self):
593
593
sage: W.positive_roots()
594
594
((1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1))
595
595
596
- sage: # needs sage.rings.number_field
596
+ sage: # needs sage.libs.gap sage. rings.number_field
597
597
sage: W = CoxeterGroup(['I',5], implementation='reflection')
598
598
sage: W.positive_roots()
599
599
((1, 0),
@@ -651,7 +651,7 @@ def roots(self):
651
651
(0, -1, -1),
652
652
(0, 0, -1))
653
653
654
- sage: # needs sage.rings.number_field
654
+ sage: # needs sage.libs.gap sage. rings.number_field
655
655
sage: W = CoxeterGroup(['I',5], implementation='reflection')
656
656
sage: len(W.roots())
657
657
10
0 commit comments