Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -547,7 +547,6 @@ def populate_model(self):
or pipeline.adaptation_metric.startswith(macros.Metric.MAP_K.value)
or pipeline.config.predict_option == macros.PRED_PROBABILITY
):
snippet = snippet.replace("predict", "predict_proba")
tpl = env.get_template("model_templates/classification_post_process.jinja")
snippet += "\n" + self._render(tpl, pipeline=pipeline)

Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
y_prob = model.predict_proba(feature_test)

# POST PROCESSING
{% if pipeline.adaptation_metric.startswith("MAP_") %}
y_pred_sorted_index = pd.DataFrame(np.argsort(-y_pred))
y_pred = y_pred_sorted_index.apply(lambda x: model.classes_[x]).to_numpy()
y_prob_sorted_index = pd.DataFrame(np.argsort(-y_prob))
y_prob = y_prob_sorted_index.apply(lambda x: model.classes_[x]).to_numpy()
{% else %}
if np.shape(y_pred)[1] == 2:
y_pred = y_pred[:, 1]
if np.shape(y_prob)[1] == 2:
y_prob = y_prob[:, 1]
{% endif %}
51 changes: 43 additions & 8 deletions sapientml_core/templates/other_templates/evaluation.py.jinja
Original file line number Diff line number Diff line change
@@ -1,11 +1,23 @@
{% if pipeline.adaptation_metric == macros.Metric.AUC.value %}
{% if pipeline.adaptation_metric == macros.Metric.AUC.value and not is_multioutput_classification%}
from sklearn.metrics import roc_auc_score
{% if pipeline.task.is_multiclass == True %}
auc = roc_auc_score(target_test.values.ravel(), y_pred, multi_class="ovr")
auc = roc_auc_score(target_test.values.ravel(), y_prob, multi_class="ovr")
{% else %}
auc = roc_auc_score(target_test, y_pred)
auc = roc_auc_score(target_test, y_prob)
{% endif %}
print('RESULT: AUC Score: ' + str(auc))
{% elif pipeline.adaptation_metric == macros.Metric.AUC.value and is_multioutput_classification%}
from sklearn.metrics import roc_auc_score
auc_scores = []
for i, col in enumerate(target_test.columns):
{% if pipeline.task.is_multiclass == True %}
one_auc = roc_auc_score(target_test[column], y_prob[i], multi_class="ovr")
{% else %}
one_auc = roc_auc_score(target_test[column], y_prob[i][:, 1])
{% endif %}
auc_scores.append(one_auc)
auc = np.mean(auc_scores)
print('RESULT: Average AUC Score:', str(auc))
{% elif (pipeline.adaptation_metric == macros.Metric.Accuracy.value) and (not pipeline.is_multi_class_multi_targets) %}
from sklearn.metrics import accuracy_score

Expand Down Expand Up @@ -50,24 +62,47 @@ target_test = np.clip(target_test, 0, None)
y_pred = np.clip(y_pred, 0, None)
rmsle = np.sqrt(mean_squared_log_error(target_test, y_pred))
print('RESULT: RMSLE:', str(rmsle))
{% elif pipeline.adaptation_metric == macros.Metric.Gini.value %}
{% elif pipeline.adaptation_metric == macros.Metric.Gini.value and not is_multioutput_classification%}
from sklearn.metrics import roc_auc_score
{% if pipeline.task.is_multiclass == True %}
gini = 2 * roc_auc_score(target_test.values.ravel(), y_pred, multi_class="ovr") - 1
gini = 2 * roc_auc_score(target_test.values.ravel(), y_prob, multi_class="ovr") - 1
{% else %}
gini = 2 * roc_auc_score(target_test, y_pred) - 1
gini = 2 * roc_auc_score(target_test, y_prob) - 1
{% endif %}
print('RESULT: Gini: ' + str(gini))
{% elif pipeline.adaptation_metric == macros.Metric.Gini.value and is_multioutput_classification%}
from sklearn.metrics import roc_auc_score
gini_scores = []
for i, col in enumerate(target_test.columns):
{% if pipeline.task.is_multiclass == True %}
one_auc = roc_auc_score(target_test[column], y_prob[i], multi_class="ovr")
{% else %}
one_auc = roc_auc_score(target_test[column], y_prob[i][:, 1])
{% endif %}
gini_score = 2 * one_auc - 1
gini_scores.append(gini_score)
gini = np.mean(gini_scores)
print('RESULT: Average Gini Score:', str(gini))
{% elif pipeline.adaptation_metric == macros.Metric.MAE.value %}
from sklearn.metrics import mean_absolute_error

mae = mean_absolute_error(target_test, y_pred)
print('RESULT: MAE:', str(mae))
{% elif pipeline.adaptation_metric == macros.Metric.LogLoss.value %}
{% elif pipeline.adaptation_metric == macros.Metric.LogLoss.value and not is_multioutput_classification%}
from sklearn.metrics import log_loss

log_loss = log_loss(target_test, y_pred)
log_loss = log_loss(target_test, y_prob)
print('RESULT: Log Loss:', str(log_loss))

{% elif pipeline.adaptation_metric == macros.Metric.LogLoss.value and is_multioutput_classification%}
from sklearn.metrics import log_loss

log_loss_scores = []
for i, column in enumerate(target_test.columns):
loss = log_loss(target_test[column], y_prob[i])
log_loss_scores.append(loss)
avg_log_loss = np.mean(log_loss_scores)
print('RESULT: Average Log Loss:', str(avg_log_loss))
{% elif pipeline.adaptation_metric == macros.Metric.ROC_AUC.value %}
from sklearn.metrics import roc_auc_score
{% if pipeline.task.is_multiclass == True %}
Expand Down