Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 24 additions & 33 deletions examples/tutorials/00_sync/010_multiturn/project/acp.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,17 @@
import os
from typing import Union, AsyncGenerator

from agents import Agent, Runner, RunConfig

from agentex.lib import adk
from agentex.types import TextContent
from agentex.lib.types.acp import SendMessageParams
from agentex.lib.types.converters import convert_task_messages_to_oai_agents_inputs
from agentex.lib.utils.model_utils import BaseModel
from agentex.lib.types.llm_messages import LLMConfig, UserMessage, SystemMessage, AssistantMessage
from agentex.lib.sdk.fastacp.fastacp import FastACP
from agentex.types.task_message_update import TaskMessageUpdate
from agentex.types.task_message_content import TaskMessageContent
from agentex.lib.adk.providers._modules.sync_provider import SyncStreamingProvider

# Create an ACP server
acp = FastACP.create(
Expand Down Expand Up @@ -66,21 +69,27 @@ async def handle_message_send(
task_messages = await adk.messages.list(task_id=params.task.id)

#########################################################
# 3. Convert task messages to LLM messages.
# 3. Run the agent with OpenAI Agents SDK
#########################################################

# This might seem duplicative, but the split between TaskMessage and LLMMessage is intentional and important.
# Initialize the provider and run config to allow for tracing
provider = SyncStreamingProvider(
trace_id=params.task.id,
)

run_config = RunConfig(
model_provider=provider,
)

# Initialize the agent
test_agent = Agent(name="assistant", instructions=state.system_prompt, model=state.model)

# Convert task messages to OpenAI Agents SDK format
input_list = convert_task_messages_to_oai_agents_inputs(task_messages)

# Run the agent
result = await Runner.run(test_agent, input_list, run_config=run_config)

llm_messages = [
SystemMessage(content=state.system_prompt),
*[
UserMessage(content=getattr(message.content, "content", ""))
if getattr(message.content, "author", None) == "user"
else AssistantMessage(content=getattr(message.content, "content", ""))
for message in task_messages
if getattr(message.content, "type", None) == "text"
],
]

# TaskMessages are messages that are sent between an Agent and a Client. They are fundamentally decoupled from messages sent to the LLM. This is because you may want to send additional metadata to allow the client to render the message on the UI differently.

Expand All @@ -94,25 +103,7 @@ async def handle_message_send(
# - If using multiple LLMs, but one LLM's output should not be sent to the user (i.e. a critic model), you can leverage the State as an internal storage mechanism to store the critic model's conversation history. This i s a powerful and flexible way to handle complex scenarios.

#########################################################
# 4. Call an LLM to respond to the user's message.
# 4. Return the agent response to the client.
#########################################################

# Call an LLM to respond to the user's message
chat_completion = await adk.providers.litellm.chat_completion(
llm_config=LLMConfig(model=state.model, messages=llm_messages),
trace_id=params.task.id,
)

#########################################################
# 5. Return the agent response to the client.
#########################################################

# The Agentex server automatically commits input and output messages to the database so you don't need to do this yourself, simply process the input content and return the output content.

# Return the agent response to the client
if chat_completion.choices[0].message:
content_str = chat_completion.choices[0].message.content or ""
else:
content_str = ""

return TextContent(author="agent", content=content_str)
return TextContent(author="agent", content=result.final_output)
2 changes: 1 addition & 1 deletion examples/tutorials/00_sync/010_multiturn/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ description = "An AgentEx agent"
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"agentex-sdk",
"agentex-sdk==0.4.28",
"scale-gp",
]

Expand Down
75 changes: 35 additions & 40 deletions examples/tutorials/00_sync/020_streaming/project/acp.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,19 @@
import os
from typing import Union, AsyncGenerator

from agents import Agent, Runner, RunConfig

from agentex.lib import adk
from agentex.lib.types.acp import SendMessageParams
from agentex.lib.types.converters import convert_task_messages_to_oai_agents_inputs
from agentex.lib.utils.model_utils import BaseModel
from agentex.lib.types.llm_messages import LLMConfig, UserMessage, SystemMessage, AssistantMessage
from agentex.lib.sdk.fastacp.fastacp import FastACP
from agentex.types.task_message_delta import TextDelta
from agentex.types.task_message_update import (
TaskMessageUpdate,
StreamTaskMessageDone,
StreamTaskMessageFull,
StreamTaskMessageDelta,
)
from agentex.types.task_message_update import TaskMessageUpdate, StreamTaskMessageFull
from agentex.types.task_message_content import TextContent, TaskMessageContent
from agentex.lib.adk.providers._modules.sync_provider import (
SyncStreamingProvider,
convert_openai_to_agentex_events,
)

# Create an ACP server
acp = FastACP.create(
Expand Down Expand Up @@ -69,40 +69,35 @@ async def handle_message_send(

task_messages = await adk.messages.list(task_id=params.task.id)

llm_messages = [
SystemMessage(content=state.system_prompt),
*[
UserMessage(content=getattr(message.content, "content", ""))
if getattr(message.content, "author", None) == "user"
else AssistantMessage(content=getattr(message.content, "content", ""))
for message in task_messages
if message.content and getattr(message.content, "type", None) == "text"
],
]

#########################################################
# 4. Call an LLM to respond to the user's message and stream the response to the client.
#########################################################
# Initialize the provider and run config to allow for tracing
provider = SyncStreamingProvider(
trace_id=params.task.id,
)

# Call an LLM to respond to the user's message
# Initialize the run config to allow for tracing and streaming
run_config = RunConfig(
model_provider=provider,
)

print(f"Calling LLM with model {state.model} and messages {llm_messages}")

# The Agentex server automatically commits input and output messages to the database so you don't need to do this yourself, simply process the input content and return the output content.
test_agent = Agent(name="assistant", instructions=state.system_prompt, model=state.model)

# Convert task messages to OpenAI Agents SDK format
input_list = convert_task_messages_to_oai_agents_inputs(task_messages)

# Run the agent and stream the events
result = Runner.run_streamed(test_agent, input_list, run_config=run_config)


#########################################################
# 4. Stream the events to the client.
#########################################################
# Convert the OpenAI events to Agentex events
# This is done by converting the OpenAI events to Agentex events and yielding them to the client
stream = result.stream_events()

# Yield the Agentex events to the client
async for agentex_event in convert_openai_to_agentex_events(stream):
yield agentex_event

message_index = 0
async for chunk in adk.providers.litellm.chat_completion_stream(
llm_config=LLMConfig(model=state.model, messages=llm_messages, stream=True),
trace_id=params.task.id,
):
if chunk and chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
yield StreamTaskMessageDelta(
type="delta",
index=message_index,
delta=TextDelta(type="text", text_delta=chunk.choices[0].delta.content or ""),
)

yield StreamTaskMessageDone(
type="done",
index=message_index,
)
2 changes: 1 addition & 1 deletion examples/tutorials/00_sync/020_streaming/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ description = "An AgentEx agent that does multiturn streaming chat"
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"agentex-sdk",
"agentex-sdk==0.4.28",
"scale-gp",
]

Expand Down