Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 8 additions & 5 deletions hiclass/LocalClassifierPerLevel.py
Original file line number Diff line number Diff line change
Expand Up @@ -258,11 +258,14 @@ def _fit_classifier(self, level, separator):
md5 = hashlib.md5(str(level).encode("utf-8")).hexdigest()
filename = f"{self.tmp_dir}/{md5}.sav"
if exists(filename):
(_, classifier) = pickle.load(open(filename, "rb"))
self.logger_.info(
f"Loaded trained model for local classifier {level} from file {filename}"
)
return classifier
try:
(_, classifier) = pickle.load(open(filename, "rb"))
self.logger_.info(
f"Loaded trained model for local classifier {level} from file {filename}"
)
return classifier
except (pickle.UnpicklingError, EOFError):
self.logger_.error(f"Could not load model from file {filename}")
self.logger_.info(f"Training local classifier {level}")
X, y, sample_weight = self._remove_empty_leaves(
separator, self.X_, self.y_[:, level], self.sample_weight_
Expand Down
17 changes: 11 additions & 6 deletions hiclass/LocalClassifierPerNode.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,12 +249,17 @@ def _fit_classifier(self, node):
md5 = hashlib.md5(node.encode("utf-8")).hexdigest()
filename = f"{self.tmp_dir}/{md5}.sav"
if exists(filename):
(_, classifier) = pickle.load(open(filename, "rb"))
self.logger_.info(
f"Loaded trained model for local classifier {node.split(self.separator_)[-1]} from file {filename}"
)
return classifier
self.logger_.info(f"Training local classifier {node}")
try:
(_, classifier) = pickle.load(open(filename, "rb"))
self.logger_.info(
f"Loaded trained model for local classifier {node.split(self.separator_)[-1]} from file {filename}"
)
return classifier
except (pickle.UnpicklingError, EOFError):
self.logger_.error(f"Could not load model from file {filename}")
self.logger_.info(
f"Training local classifier {str(node).split(self.separator_)[-1]}"
)
X, y, sample_weight = self.binary_policy_.get_binary_examples(node)
unique_y = np.unique(y)
if len(unique_y) == 1 and self.replace_classifiers:
Expand Down
17 changes: 11 additions & 6 deletions hiclass/LocalClassifierPerParentNode.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,12 +218,17 @@ def _fit_classifier(self, node):
md5 = hashlib.md5(node.encode("utf-8")).hexdigest()
filename = f"{self.tmp_dir}/{md5}.sav"
if exists(filename):
(_, classifier) = pickle.load(open(filename, "rb"))
self.logger_.info(
f"Loaded trained model for local classifier {node.split(self.separator_)[-1]} from file {filename}"
)
return classifier
self.logger_.info(f"Training local classifier {node}")
try:
(_, classifier) = pickle.load(open(filename, "rb"))
self.logger_.info(
f"Loaded trained model for local classifier {node.split(self.separator_)[-1]} from file {filename}"
)
return classifier
except (pickle.UnpicklingError, EOFError):
self.logger_.error(f"Could not load model from file {filename}")
self.logger_.info(
f"Training local classifier {str(node).split(self.separator_)[-1]}"
)
# get children examples
X, y, sample_weight = self._get_successors(node)
unique_y = np.unique(y)
Expand Down