|
| 1 | +""" Benchmarking CD solvers for factorization machines. |
| 2 | +
|
| 3 | +Compares polylearn with with fastFM [1]. |
| 4 | +
|
| 5 | +[1] http://ibayer.github.io/fastFM/ |
| 6 | +
|
| 7 | +Note: this benchmark uses the squared loss and a regression formulation, for |
| 8 | +the fairest comparison. The CD solvers in polylearn support logistic loss and |
| 9 | +squared hinge loss as well. |
| 10 | +
|
| 11 | +""" |
| 12 | + |
| 13 | +from time import time |
| 14 | + |
| 15 | +import numpy as np |
| 16 | +import scipy.sparse as sp |
| 17 | + |
| 18 | +from sklearn.metrics import accuracy_score, f1_score |
| 19 | +from sklearn.datasets import fetch_20newsgroups_vectorized |
| 20 | + |
| 21 | +from polylearn import FactorizationMachineRegressor |
| 22 | +if __name__ == '__main__': |
| 23 | + data_train = fetch_20newsgroups_vectorized(subset="train") |
| 24 | + data_test = fetch_20newsgroups_vectorized(subset="test") |
| 25 | + X_train = sp.csc_matrix(data_train.data) |
| 26 | + X_test = sp.csc_matrix(data_test.data) |
| 27 | + |
| 28 | + y_train = data_train.target == 0 # atheism vs rest |
| 29 | + y_test = data_test.target == 0 |
| 30 | + |
| 31 | + y_train = (2 * y_train - 1).astype(np.float) |
| 32 | + |
| 33 | + print(__doc__) |
| 34 | + print("20 newsgroups") |
| 35 | + print("=============") |
| 36 | + print("X_train.shape = {0}".format(X_train.shape)) |
| 37 | + print("X_train.format = {0}".format(X_train.format)) |
| 38 | + print("X_train.dtype = {0}".format(X_train.dtype)) |
| 39 | + print("X_train density = {0}" |
| 40 | + "".format(X_train.nnz / np.product(X_train.shape))) |
| 41 | + print("y_train {0}".format(y_train.shape)) |
| 42 | + print("X_test {0}".format(X_test.shape)) |
| 43 | + print("X_test.format = {0}".format(X_test.format)) |
| 44 | + print("X_test.dtype = {0}".format(X_test.dtype)) |
| 45 | + print("y_test {0}".format(y_test.shape)) |
| 46 | + print() |
| 47 | + |
| 48 | + print("Training regressors") |
| 49 | + print("===================") |
| 50 | + f1, accuracy, train_time, test_time = {}, {}, {}, {} |
| 51 | + |
| 52 | + print("Training our solver... ", end="") |
| 53 | + fm = FactorizationMachineRegressor(n_components=20, |
| 54 | + fit_linear=True, |
| 55 | + fit_lower=False, |
| 56 | + alpha=5, |
| 57 | + beta=5, |
| 58 | + degree=2, |
| 59 | + random_state=0, |
| 60 | + max_iter=100) |
| 61 | + t0 = time() |
| 62 | + fm.fit(X_train, y_train) |
| 63 | + train_time['polylearn'] = time() - t0 |
| 64 | + t0 = time() |
| 65 | + y_pred = fm.predict(X_test) > 0 |
| 66 | + test_time['polylearn'] = time() - t0 |
| 67 | + accuracy['polylearn'] = accuracy_score(y_test, y_pred) |
| 68 | + f1['polylearn'] = f1_score(y_test, y_pred) |
| 69 | + print("done") |
| 70 | + |
| 71 | + try: |
| 72 | + from fastFM import als |
| 73 | + |
| 74 | + print("Training fastfm... ", end="") |
| 75 | + clf = als.FMRegression(n_iter=100, init_stdev=0.01, rank=20, |
| 76 | + random_state=0, l2_reg=10.) |
| 77 | + clf.ignore_w_0 = True # since polylearn has no fit_intercept yet |
| 78 | + t0 = time() |
| 79 | + |
| 80 | + clf.fit(X_train, y_train) |
| 81 | + train_time['fastfm'] = time() - t0 |
| 82 | + |
| 83 | + t0 = time() |
| 84 | + y_pred = clf.predict(X_test) |
| 85 | + test_time['fastfm'] = time() - t0 |
| 86 | + y_pred = y_pred > 0 |
| 87 | + accuracy['fastfm'] = accuracy_score(y_test, y_pred) |
| 88 | + f1['fastfm'] = f1_score(y_test, y_pred) |
| 89 | + |
| 90 | + print("done") |
| 91 | + except ImportError: |
| 92 | + print("fastfm not found") |
| 93 | + |
| 94 | + print("Regression performance:") |
| 95 | + print("=======================") |
| 96 | + print() |
| 97 | + print("%s %s %s %s %s" % ("Model".ljust(16), |
| 98 | + "train".rjust(10), |
| 99 | + "test".rjust(10), |
| 100 | + "f1".rjust(10), |
| 101 | + "accuracy".rjust(10))) |
| 102 | + print("-" * (16 + 4 * 11)) |
| 103 | + for name in sorted(f1, key=f1.get): |
| 104 | + print("%s %s %s %s %s" % ( |
| 105 | + name.ljust(16), |
| 106 | + ("%.4fs" % train_time[name]).rjust(10), |
| 107 | + ("%.4fs" % test_time[name]).rjust(10), |
| 108 | + ("%.4f" % f1[name]).rjust(10), |
| 109 | + ("%.4f" % accuracy[name]).rjust(10))) |
| 110 | + |
| 111 | + print() |
0 commit comments