@@ -101,10 +101,10 @@ def _glm_fit(X, y, model, datafit, penalty, solver):
101
101
102
102
n_samples , n_features = X_ .shape
103
103
104
- if issparse (X ):
105
- datafit .initialize_sparse (X_ .data , X_ .indptr , X_ .indices , y )
106
- else :
107
- datafit .initialize (X_ , y )
104
+ # if issparse(X):
105
+ # datafit.initialize_sparse(X_.data, X_.indptr, X_.indices, y)
106
+ # else:
107
+ # datafit.initialize(X_, y)
108
108
109
109
# if model.warm_start and hasattr(model, 'coef_') and model.coef_ is not None:
110
110
if solver .warm_start and hasattr (model , 'coef_' ) and model .coef_ is not None :
@@ -1373,11 +1373,11 @@ def fit(self, X, y):
1373
1373
fit_intercept = False ,
1374
1374
)
1375
1375
1376
- # solve problem
1377
- if not issparse (X ):
1378
- datafit .initialize (X , y )
1379
- else :
1380
- datafit .initialize_sparse (X .data , X .indptr , X .indices , y )
1376
+ # # solve problem
1377
+ # if not issparse(X):
1378
+ # datafit.initialize(X, y)
1379
+ # else:
1380
+ # datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
1381
1381
1382
1382
w , _ , stop_crit = solver .solve (X , y , datafit , penalty )
1383
1383
0 commit comments