Skip to content

Commit 41a55b2

Browse files
committed
Emphasise table captions
1 parent 2e14f9d commit 41a55b2

File tree

5 files changed

+15
-15
lines changed

5 files changed

+15
-15
lines changed

advanced/advanced_numpy/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ block.
158158

159159
{class}`dtype` describes a single item in the array:
160160

161-
::: {list-table} Dtypes
161+
::: {list-table} **Dtypes**
162162

163163
- - type
164164
- **scalar type** of the data, one of:

advanced/mathematical_optimization/index.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -300,7 +300,7 @@ gradient, that is the direction of the _steepest descent_.
300300

301301
+++
302302

303-
::: {list-table} Fixed step gradient descent
303+
::: {list-table} **Fixed step gradient descent**
304304

305305
- - **A well-conditioned quadratic function.**
306306

@@ -345,7 +345,7 @@ Also, it clearly can be advantageous to take bigger steps. This
345345
is done in gradient descent code using a
346346
[line search](https://en.wikipedia.org/wiki/Line_search).
347347

348-
::: {list-table} Adaptive step gradient descent
348+
::: {list-table} **Adaptive step gradient descent**
349349

350350
- - A well-conditioned quadratic function.
351351

@@ -409,7 +409,7 @@ it cross the valley. The conjugate gradient solves this problem by adding
409409
a _friction_ term: each step depends on the two last values of the
410410
gradient and sharp turns are reduced.
411411

412-
::: {list-table} Conjugate gradient descent
412+
::: {list-table} **Conjugate gradient descent**
413413

414414
- - An ill-conditioned non-quadratic function.
415415

@@ -773,7 +773,7 @@ See [compare optimizers](compare-optimizers-eg).
773773

774774
:::
775775

776-
::: {list-table} Rules of thumb for choosing a method
776+
::: {list-table} **Rules of thumb for choosing a method**
777777

778778
- - Without knowledge of the gradient
779779

intro/intro.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ Valentin Haenel_
4848

4949
### How does Python compare to other solutions?
5050

51-
::: {list-table} Compiled languages (C, C++, Fortran ...)
51+
::: {list-table} **Compiled languages (C, C++, Fortran ...)**
5252

5353
- - Pros
5454
- Very fast. For heavy computations, it’s difficult to outperform these
@@ -60,7 +60,7 @@ Valentin Haenel_
6060

6161
:::
6262

63-
::: {list-table} Matlab scripting language
63+
::: {list-table} **Matlab scripting language**
6464

6565
- - Pros
6666
- - Very rich collection of libraries with numerous algorithms, for many
@@ -76,7 +76,7 @@ Valentin Haenel_
7676

7777
:::
7878

79-
::: {list-table} Julia
79+
::: {list-table} **Julia**
8080

8181
- - Pros
8282
- - Fast code, yet interactive and simple to read and write.
@@ -87,7 +87,7 @@ Valentin Haenel_
8787

8888
:::
8989

90-
::: {list-table} Other scripting languages: Scilab, Octave, R, IDL, etc.
90+
::: {list-table} **Other scripting languages:** Scilab, Octave, R, IDL, etc.
9191

9292
- - Pros
9393
- - Open-source, free, or at least cheaper than Matlab.
@@ -101,7 +101,7 @@ Valentin Haenel_
101101

102102
:::
103103

104-
::: {list-table} Python
104+
::: {list-table} **Python**
105105

106106
- - Pros
107107
- - Very rich scientific computing libraries

packages/scikit-image/index.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ Images are NumPy's arrays `np.ndarray`
4646

4747
+++
4848

49-
::: {list-table} Terms
49+
::: {list-table} **Terms**
5050

5151
- - Pixels
5252
- array values: `a[2, 3]`
@@ -77,7 +77,7 @@ Python installations, as well as in most Linux distributions. Other
7777
Python packages for image processing & visualization that operate on
7878
NumPy arrays include:
7979

80-
::: {list-table} Other packages for working with images
80+
::: {list-table} **Other packages for working with images**
8181

8282
- - {mod}`scipy.ndimage`
8383
- For N-dimensional arrays. Basic filtering, mathematical morphology,
@@ -91,7 +91,7 @@ NumPy arrays include:
9191

9292
Some powerful C++ image processing libraries also have Python bindings:
9393

94-
::: {list-table} C++ libraries with Python bindings
94+
::: {list-table} **C++ libraries with Python bindings**
9595

9696
- - [OpenCV](https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html)
9797
- A highly optimized computer vision library with a focus on real-time
@@ -117,7 +117,7 @@ The library contains predominantly image processing algorithms, but
117117
also utility functions to ease data handling and processing.
118118
It contains the following submodules:
119119

120-
::: {list-table} Scikit-image submodules
120+
::: {list-table} **Scikit-image submodules**
121121

122122
- - {mod}`skimage.color`
123123
- Color space conversion.

packages/scikit-learn/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -500,7 +500,7 @@ Scikit-learn strives to have a uniform interface across all methods, and
500500
we’ll see examples of these below. Given a scikit-learn _estimator_
501501
object named `model`, the following methods are available:
502502

503-
::: {list-table} Estimator interfaces
503+
::: {list-table} **Estimator interfaces**
504504

505505
- - All Estimators
506506
- - `model.fit()` : fit training data. For supervised learning

0 commit comments

Comments
 (0)