@@ -39,22 +39,26 @@ collect_results = function(n,p,s, nsim=1, level=0.9){
39
39
ridge_term = sd(y )/ sqrt(n )
40
40
noise_scale = sd(y )/ 2
41
41
result = selectiveInference ::: randomized_inference(X ,y ,sigma ,lam ,noise_scale ,ridge_term , level )
42
- true_beta = beta [result $ active_set ]
43
- coverage = rep(0 , nrow(result $ ci ))
44
- for (i in 1 : nrow(result $ ci )){
45
- if (result $ ci [i ,1 ]< true_beta [i ] & result $ ci [i ,2 ]> true_beta [i ]){
46
- coverage [i ]= 1
42
+ if (length(result $ active_set )> 0 ){
43
+ true_beta = beta [result $ active_set ]
44
+ coverage = rep(0 , nrow(result $ ci ))
45
+ for (i in 1 : nrow(result $ ci )){
46
+ if (result $ ci [i ,1 ]< true_beta [i ] & result $ ci [i ,2 ]> true_beta [i ]){
47
+ coverage [i ]= 1
48
+ }
49
+ print(paste(" ci" , toString(result $ ci [i ,])))
47
50
}
48
- print(paste(" ci" , toString(result $ ci [i ,])))
51
+ sample_pvalues = c(sample_pvalues , result $ pvalues )
52
+ sample_coverage = c(sample_coverage , coverage )
49
53
}
50
- sample_pvalues = c(sample_pvalues , result $ pvalues )
51
- sample_coverage = c(sample_coverage , coverage )
52
54
}
53
- print(paste(" coverage" , mean(sample_coverage )))
54
- jpeg(' pivots.jpg' )
55
- plot(ecdf(sample_pvalues ), xlim = c(0 ,1 ), main = " Empirical CDF of null p-values" , xlab = " p-values" , ylab = " ecdf" )
56
- abline(0 , 1 , lty = 2 )
57
- dev.off()
55
+ if (length(sample_coverage )> 0 ){
56
+ print(paste(" coverage" , mean(sample_coverage )))
57
+ jpeg(' pivots.jpg' )
58
+ plot(ecdf(sample_pvalues ), xlim = c(0 ,1 ), main = " Empirical CDF of null p-values" , xlab = " p-values" , ylab = " ecdf" )
59
+ abline(0 , 1 , lty = 2 )
60
+ dev.off()
61
+ }
58
62
}
59
63
60
64
set.seed(1 )
0 commit comments