Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions automation/notebooks-table-data.csv
Original file line number Diff line number Diff line change
Expand Up @@ -16,3 +16,4 @@ Multi-Head Attention, modules/multihead-self-attention.ipynb,,https://arxiv.org/
ResNet,architectures/resnet.ipynb,,https://arxiv.org/abs/1512.03385
Convolutional Block Attention, modules/convolutional-block-attention.ipynb,,https://arxiv.org/abs/1807.06521
Transformer, architectures/transformer.ipynb,,https://arxiv.org/abs/1706.03762
ConvMixer,architectures/convmixer.ipynb,,https://arxiv.org/pdf/2201.09792
216 changes: 216 additions & 0 deletions notebooks/architectures/convmixer.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "IJveajFZvdXK"
},
"source": [
"## ConvMixer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "q5AuzFB2tA12"
},
"outputs": [],
"source": [
"#@title **Install required packages**\n",
"\n",
"%%capture\n",
"! pip install torchinfo"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "118P89a1osHb"
},
"outputs": [],
"source": [
"#@title **Importing libraries**\n",
"import torch # 2.5.1+cu121\n",
"import torch.nn as nn\n",
"import torchinfo #1.8.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QchOSIbro1zf",
"outputId": "94003f5a-622f-4f54-e916-26fbbff86c17"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch version: 2.5.1+cu121\n",
"torchinfo version: 1.8.0\n"
]
}
],
"source": [
"# Note: Not all dependencies have the __version__ method.\n",
"print(f\"torch version: {torch.__version__}\")\n",
"print(f\"torchinfo version: {torchinfo.__version__}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hrG5QYB4pRMu"
},
"source": [
"**ConvMixer architecture code**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "r2d2e2P0pdan"
},
"outputs": [],
"source": [
"class Residual(nn.Module):\n",
" def __init__(self, fn):\n",
" super().__init__()\n",
" self.fn = fn\n",
"\n",
" def forward(self, x):\n",
" return self.fn(x) + x\n",
"\n",
"def ConvMixer(dim, depth, kernel_size = 9, patch_size = 7, n_classes = 1000):\n",
" return nn.Sequential(\n",
" nn.Conv2d(3, dim, kernel_size = patch_size, stride = patch_size),\n",
" nn.GELU(),\n",
" nn.BatchNorm2d(dim),\n",
" *[nn.Sequential(\n",
" Residual(nn.Sequential(\n",
" nn.Conv2d(dim, dim, kernel_size, groups=dim, padding=\"same\"),\n",
" nn.GELU(),\n",
" nn.BatchNorm2d(dim)\n",
" )),\n",
" nn.Conv2d(dim,dim, kernel_size = 1),\n",
" nn.GELU(),\n",
" nn.BatchNorm2d(dim)\n",
" )for i in range(depth)],\n",
" nn.AdaptiveAvgPool2d((1,1)),\n",
" nn.Flatten(),\n",
" nn.Linear(dim, n_classes)\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9YM5zfNoslTx",
"outputId": "1b5a1295-d3ac-49c9-d61d-ae986021ad00"
},
"outputs": [
{
"data": {
"text/plain": [
"=================================================================\n",
"Layer (type:depth-idx) Param #\n",
"=================================================================\n",
"Sequential --\n",
"├─Conv2d: 1-1 8,192\n",
"├─GELU: 1-2 --\n",
"├─BatchNorm2d: 1-3 4,096\n",
"├─Sequential: 1-4 --\n",
"│ └─Residual: 2-1 --\n",
"│ │ └─Sequential: 3-1 172,032\n",
"│ └─Conv2d: 2-2 4,196,352\n",
"│ └─GELU: 2-3 --\n",
"│ └─BatchNorm2d: 2-4 4,096\n",
"├─Sequential: 1-5 --\n",
"│ └─Residual: 2-5 --\n",
"│ │ └─Sequential: 3-2 172,032\n",
"│ └─Conv2d: 2-6 4,196,352\n",
"│ └─GELU: 2-7 --\n",
"│ └─BatchNorm2d: 2-8 4,096\n",
"├─Sequential: 1-6 --\n",
"│ └─Residual: 2-9 --\n",
"│ │ └─Sequential: 3-3 172,032\n",
"│ └─Conv2d: 2-10 4,196,352\n",
"│ └─GELU: 2-11 --\n",
"│ └─BatchNorm2d: 2-12 4,096\n",
"├─Sequential: 1-7 --\n",
"│ └─Residual: 2-13 --\n",
"│ │ └─Sequential: 3-4 172,032\n",
"│ └─Conv2d: 2-14 4,196,352\n",
"│ └─GELU: 2-15 --\n",
"│ └─BatchNorm2d: 2-16 4,096\n",
"├─Sequential: 1-8 --\n",
"│ └─Residual: 2-17 --\n",
"│ │ └─Sequential: 3-5 172,032\n",
"│ └─Conv2d: 2-18 4,196,352\n",
"│ └─GELU: 2-19 --\n",
"│ └─BatchNorm2d: 2-20 4,096\n",
"├─Sequential: 1-9 --\n",
"│ └─Residual: 2-21 --\n",
"│ │ └─Sequential: 3-6 172,032\n",
"│ └─Conv2d: 2-22 4,196,352\n",
"│ └─GELU: 2-23 --\n",
"│ └─BatchNorm2d: 2-24 4,096\n",
"├─Sequential: 1-10 --\n",
"│ └─Residual: 2-25 --\n",
"│ │ └─Sequential: 3-7 172,032\n",
"│ └─Conv2d: 2-26 4,196,352\n",
"│ └─GELU: 2-27 --\n",
"│ └─BatchNorm2d: 2-28 4,096\n",
"├─Sequential: 1-11 --\n",
"│ └─Residual: 2-29 --\n",
"│ │ └─Sequential: 3-8 172,032\n",
"│ └─Conv2d: 2-30 4,196,352\n",
"│ └─GELU: 2-31 --\n",
"│ └─BatchNorm2d: 2-32 4,096\n",
"├─AdaptiveAvgPool2d: 1-12 --\n",
"├─Flatten: 1-13 --\n",
"├─Linear: 1-14 2,049,000\n",
"=================================================================\n",
"Total params: 37,041,128\n",
"Trainable params: 37,041,128\n",
"Non-trainable params: 0\n",
"================================================================="
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = ConvMixer(2048, 8, kernel_size=9, patch_size=1, n_classes=1000)\n",
"torchinfo.summary(model)"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}