|
81 | 81 | },
|
82 | 82 | {
|
83 | 83 | "cell_type": "code",
|
84 |
| - "execution_count": 39, |
| 84 | + "execution_count": 10, |
85 | 85 | "metadata": {},
|
86 | 86 | "outputs": [
|
87 | 87 | {
|
|
91 | 91 | "Number of datasets each algorithm does best on:\n",
|
92 | 92 | "Counter({'AutoGluon (sec=120)': 84, 'AutoGluon (sec=60)': 74, 'LightGBM (n_iter=25)': 74, 'LightGBM (n_iter=10)': 68, 'Logistic Regression': 64, 'Random Forest': 64, 'SVC': 35}) \n",
|
93 | 93 | "\n",
|
94 |
| - "Average performance for each algorithm: model\n", |
| 94 | + "Average performance for each model\n", |
95 | 95 | "AutoGluon (sec=120) 0.887491\n",
|
96 | 96 | "AutoGluon (sec=60) 0.886326\n",
|
97 | 97 | "LightGBM (n_iter=10) 0.886359\n",
|
|
101 | 101 | "SVC 0.852368\n",
|
102 | 102 | "Name: mean_auroc, dtype: float64 \n",
|
103 | 103 | "\n",
|
104 |
| - "Median performance for each algorithm: model\n", |
| 104 | + "Median performance for each model\n", |
105 | 105 | "AutoGluon (sec=120) 0.924359\n",
|
106 | 106 | "AutoGluon (sec=60) 0.925754\n",
|
107 | 107 | "LightGBM (n_iter=10) 0.924920\n",
|
|
124 | 124 | "\n",
|
125 | 125 | "print('Number of datasets each algorithm does best on:')\n",
|
126 | 126 | "print(Counter(winning_algorithms), '\\n')\n",
|
127 |
| - "print('Average performance for each algorithm:', results_df.groupby('model')['mean_auroc'].mean(), '\\n')\n", |
128 |
| - "print('Median performance for each algorithm:', results_df.groupby('model')['mean_auroc'].median())" |
| 127 | + "print('Average performance for each', results_df.groupby('model')['mean_auroc'].mean(), '\\n')\n", |
| 128 | + "print('Median performance for each', results_df.groupby('model')['mean_auroc'].median())" |
129 | 129 | ]
|
130 | 130 | },
|
131 | 131 | {
|
|
242 | 242 | "g.set(xscale=\"log\")"
|
243 | 243 | ]
|
244 | 244 | },
|
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": 13, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [ |
| 250 | + { |
| 251 | + "data": { |
| 252 | + "text/plain": [ |
| 253 | + "dataset\n", |
| 254 | + "iris 0.000000\n", |
| 255 | + "robot-nav-sensor-readings-2 0.000000\n", |
| 256 | + "robot-nav-sensor-readings-4 0.000000\n", |
| 257 | + "hayes-roth 0.000000\n", |
| 258 | + "banknote-authentication 0.000000\n", |
| 259 | + " ... \n", |
| 260 | + "thoracic-surgery 0.014894\n", |
| 261 | + "leukemia-haslinger 0.022436\n", |
| 262 | + "autoUniv-au7-cpd1-500 0.022964\n", |
| 263 | + "planning-relax 0.051938\n", |
| 264 | + "meta-data 0.324029\n", |
| 265 | + "Name: mean_auroc, Length: 142, dtype: float64" |
| 266 | + ] |
| 267 | + }, |
| 268 | + "execution_count": 13, |
| 269 | + "metadata": {}, |
| 270 | + "output_type": "execute_result" |
| 271 | + } |
| 272 | + ], |
| 273 | + "source": [ |
| 274 | + "results_df.groupby('dataset')['mean_auroc'].apply(lambda x: np.sort(x)[-1] - np.sort(x)[-2]).sort_values()" |
| 275 | + ] |
| 276 | + }, |
| 277 | + { |
| 278 | + "cell_type": "code", |
| 279 | + "execution_count": 24, |
| 280 | + "metadata": {}, |
| 281 | + "outputs": [ |
| 282 | + { |
| 283 | + "data": { |
| 284 | + "text/html": [ |
| 285 | + "<div>\n", |
| 286 | + "<style scoped>\n", |
| 287 | + " .dataframe tbody tr th:only-of-type {\n", |
| 288 | + " vertical-align: middle;\n", |
| 289 | + " }\n", |
| 290 | + "\n", |
| 291 | + " .dataframe tbody tr th {\n", |
| 292 | + " vertical-align: top;\n", |
| 293 | + " }\n", |
| 294 | + "\n", |
| 295 | + " .dataframe thead th {\n", |
| 296 | + " text-align: right;\n", |
| 297 | + " }\n", |
| 298 | + "</style>\n", |
| 299 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 300 | + " <thead>\n", |
| 301 | + " <tr style=\"text-align: right;\">\n", |
| 302 | + " <th></th>\n", |
| 303 | + " <th>auroc_split_1</th>\n", |
| 304 | + " <th>auroc_split_2</th>\n", |
| 305 | + " <th>auroc_split_3</th>\n", |
| 306 | + " <th>auroc_split_4</th>\n", |
| 307 | + " <th>model</th>\n", |
| 308 | + " <th>nrow</th>\n", |
| 309 | + " <th>ncol</th>\n", |
| 310 | + " <th>mv</th>\n", |
| 311 | + " <th>ir</th>\n", |
| 312 | + " <th>class</th>\n", |
| 313 | + " <th>mean_auroc</th>\n", |
| 314 | + " <th>min_auroc</th>\n", |
| 315 | + " <th>max_auroc</th>\n", |
| 316 | + " <th>std_auroc</th>\n", |
| 317 | + " <th>dataset</th>\n", |
| 318 | + " </tr>\n", |
| 319 | + " </thead>\n", |
| 320 | + " <tbody>\n", |
| 321 | + " <tr>\n", |
| 322 | + " <th>planning-relax</th>\n", |
| 323 | + " <td>0.648019</td>\n", |
| 324 | + " <td>0.594406</td>\n", |
| 325 | + " <td>0.358173</td>\n", |
| 326 | + " <td>0.531250</td>\n", |
| 327 | + " <td>SVC</td>\n", |
| 328 | + " <td>182.0</td>\n", |
| 329 | + " <td>13.0</td>\n", |
| 330 | + " <td>0.0</td>\n", |
| 331 | + " <td>0.714286</td>\n", |
| 332 | + " <td>2.0</td>\n", |
| 333 | + " <td>0.532962</td>\n", |
| 334 | + " <td>0.358173</td>\n", |
| 335 | + " <td>0.648019</td>\n", |
| 336 | + " <td>0.125920</td>\n", |
| 337 | + " <td>planning-relax</td>\n", |
| 338 | + " </tr>\n", |
| 339 | + " <tr>\n", |
| 340 | + " <th>planning-relax</th>\n", |
| 341 | + " <td>0.375291</td>\n", |
| 342 | + " <td>0.356643</td>\n", |
| 343 | + " <td>0.305288</td>\n", |
| 344 | + " <td>0.497596</td>\n", |
| 345 | + " <td>Logistic Regression</td>\n", |
| 346 | + " <td>182.0</td>\n", |
| 347 | + " <td>13.0</td>\n", |
| 348 | + " <td>0.0</td>\n", |
| 349 | + " <td>0.714286</td>\n", |
| 350 | + " <td>2.0</td>\n", |
| 351 | + " <td>0.383705</td>\n", |
| 352 | + " <td>0.305288</td>\n", |
| 353 | + " <td>0.497596</td>\n", |
| 354 | + " <td>0.081493</td>\n", |
| 355 | + " <td>planning-relax</td>\n", |
| 356 | + " </tr>\n", |
| 357 | + " <tr>\n", |
| 358 | + " <th>planning-relax</th>\n", |
| 359 | + " <td>0.341492</td>\n", |
| 360 | + " <td>0.403263</td>\n", |
| 361 | + " <td>0.268029</td>\n", |
| 362 | + " <td>0.413462</td>\n", |
| 363 | + " <td>Random Forest</td>\n", |
| 364 | + " <td>182.0</td>\n", |
| 365 | + " <td>13.0</td>\n", |
| 366 | + " <td>0.0</td>\n", |
| 367 | + " <td>0.714286</td>\n", |
| 368 | + " <td>2.0</td>\n", |
| 369 | + " <td>0.356561</td>\n", |
| 370 | + " <td>0.268029</td>\n", |
| 371 | + " <td>0.413462</td>\n", |
| 372 | + " <td>0.067042</td>\n", |
| 373 | + " <td>planning-relax</td>\n", |
| 374 | + " </tr>\n", |
| 375 | + " <tr>\n", |
| 376 | + " <th>planning-relax</th>\n", |
| 377 | + " <td>0.393939</td>\n", |
| 378 | + " <td>0.550117</td>\n", |
| 379 | + " <td>0.268029</td>\n", |
| 380 | + " <td>0.500000</td>\n", |
| 381 | + " <td>LightGBM (n_iter=10)</td>\n", |
| 382 | + " <td>182.0</td>\n", |
| 383 | + " <td>13.0</td>\n", |
| 384 | + " <td>0.0</td>\n", |
| 385 | + " <td>0.714286</td>\n", |
| 386 | + " <td>2.0</td>\n", |
| 387 | + " <td>0.428021</td>\n", |
| 388 | + " <td>0.268029</td>\n", |
| 389 | + " <td>0.550117</td>\n", |
| 390 | + " <td>0.124963</td>\n", |
| 391 | + " <td>planning-relax</td>\n", |
| 392 | + " </tr>\n", |
| 393 | + " <tr>\n", |
| 394 | + " <th>planning-relax</th>\n", |
| 395 | + " <td>0.493007</td>\n", |
| 396 | + " <td>0.589744</td>\n", |
| 397 | + " <td>0.341346</td>\n", |
| 398 | + " <td>0.500000</td>\n", |
| 399 | + " <td>LightGBM (n_iter=25)</td>\n", |
| 400 | + " <td>182.0</td>\n", |
| 401 | + " <td>13.0</td>\n", |
| 402 | + " <td>0.0</td>\n", |
| 403 | + " <td>0.714286</td>\n", |
| 404 | + " <td>2.0</td>\n", |
| 405 | + " <td>0.481024</td>\n", |
| 406 | + " <td>0.341346</td>\n", |
| 407 | + " <td>0.589744</td>\n", |
| 408 | + " <td>0.103011</td>\n", |
| 409 | + " <td>planning-relax</td>\n", |
| 410 | + " </tr>\n", |
| 411 | + " <tr>\n", |
| 412 | + " <th>planning-relax</th>\n", |
| 413 | + " <td>0.333333</td>\n", |
| 414 | + " <td>0.496503</td>\n", |
| 415 | + " <td>0.367788</td>\n", |
| 416 | + " <td>0.514423</td>\n", |
| 417 | + " <td>AutoGluon (sec=60)</td>\n", |
| 418 | + " <td>182.0</td>\n", |
| 419 | + " <td>13.0</td>\n", |
| 420 | + " <td>0.0</td>\n", |
| 421 | + " <td>0.714286</td>\n", |
| 422 | + " <td>2.0</td>\n", |
| 423 | + " <td>0.428012</td>\n", |
| 424 | + " <td>0.333333</td>\n", |
| 425 | + " <td>0.514423</td>\n", |
| 426 | + " <td>0.090827</td>\n", |
| 427 | + " <td>planning-relax</td>\n", |
| 428 | + " </tr>\n", |
| 429 | + " <tr>\n", |
| 430 | + " <th>planning-relax</th>\n", |
| 431 | + " <td>0.365967</td>\n", |
| 432 | + " <td>0.463869</td>\n", |
| 433 | + " <td>0.382212</td>\n", |
| 434 | + " <td>0.500000</td>\n", |
| 435 | + " <td>AutoGluon (sec=120)</td>\n", |
| 436 | + " <td>182.0</td>\n", |
| 437 | + " <td>13.0</td>\n", |
| 438 | + " <td>0.0</td>\n", |
| 439 | + " <td>0.714286</td>\n", |
| 440 | + " <td>2.0</td>\n", |
| 441 | + " <td>0.428012</td>\n", |
| 442 | + " <td>0.365967</td>\n", |
| 443 | + " <td>0.500000</td>\n", |
| 444 | + " <td>0.064331</td>\n", |
| 445 | + " <td>planning-relax</td>\n", |
| 446 | + " </tr>\n", |
| 447 | + " </tbody>\n", |
| 448 | + "</table>\n", |
| 449 | + "</div>" |
| 450 | + ], |
| 451 | + "text/plain": [ |
| 452 | + " auroc_split_1 auroc_split_2 auroc_split_3 auroc_split_4 \\\n", |
| 453 | + "planning-relax 0.648019 0.594406 0.358173 0.531250 \n", |
| 454 | + "planning-relax 0.375291 0.356643 0.305288 0.497596 \n", |
| 455 | + "planning-relax 0.341492 0.403263 0.268029 0.413462 \n", |
| 456 | + "planning-relax 0.393939 0.550117 0.268029 0.500000 \n", |
| 457 | + "planning-relax 0.493007 0.589744 0.341346 0.500000 \n", |
| 458 | + "planning-relax 0.333333 0.496503 0.367788 0.514423 \n", |
| 459 | + "planning-relax 0.365967 0.463869 0.382212 0.500000 \n", |
| 460 | + "\n", |
| 461 | + " model nrow ncol mv ir class \\\n", |
| 462 | + "planning-relax SVC 182.0 13.0 0.0 0.714286 2.0 \n", |
| 463 | + "planning-relax Logistic Regression 182.0 13.0 0.0 0.714286 2.0 \n", |
| 464 | + "planning-relax Random Forest 182.0 13.0 0.0 0.714286 2.0 \n", |
| 465 | + "planning-relax LightGBM (n_iter=10) 182.0 13.0 0.0 0.714286 2.0 \n", |
| 466 | + "planning-relax LightGBM (n_iter=25) 182.0 13.0 0.0 0.714286 2.0 \n", |
| 467 | + "planning-relax AutoGluon (sec=60) 182.0 13.0 0.0 0.714286 2.0 \n", |
| 468 | + "planning-relax AutoGluon (sec=120) 182.0 13.0 0.0 0.714286 2.0 \n", |
| 469 | + "\n", |
| 470 | + " mean_auroc min_auroc max_auroc std_auroc dataset \n", |
| 471 | + "planning-relax 0.532962 0.358173 0.648019 0.125920 planning-relax \n", |
| 472 | + "planning-relax 0.383705 0.305288 0.497596 0.081493 planning-relax \n", |
| 473 | + "planning-relax 0.356561 0.268029 0.413462 0.067042 planning-relax \n", |
| 474 | + "planning-relax 0.428021 0.268029 0.550117 0.124963 planning-relax \n", |
| 475 | + "planning-relax 0.481024 0.341346 0.589744 0.103011 planning-relax \n", |
| 476 | + "planning-relax 0.428012 0.333333 0.514423 0.090827 planning-relax \n", |
| 477 | + "planning-relax 0.428012 0.365967 0.500000 0.064331 planning-relax " |
| 478 | + ] |
| 479 | + }, |
| 480 | + "execution_count": 24, |
| 481 | + "metadata": {}, |
| 482 | + "output_type": "execute_result" |
| 483 | + } |
| 484 | + ], |
| 485 | + "source": [ |
| 486 | + "results_df.loc['planning-relax']" |
| 487 | + ] |
| 488 | + }, |
245 | 489 | {
|
246 | 490 | "cell_type": "code",
|
247 | 491 | "execution_count": null,
|
|
0 commit comments