Daydreaming is the first awakening of what we call simulflow. It is an essential tool of rational thought. With it you can clear the mind for better thinking. – Frank Herbert, Heretics of Dune
Bene Gesserit also have the ability to practice simulflow, literally the simultaneous flow of several threads of consciousness at any given time; mental multitasking, as it were. The combination of simulflow with their analytical abilities and Other Memory is responsible for the frightening intelligence of the average Bene Gesserit.
Simulflow, Dune Wiki
simulflow is a Clojure framework for building real-time voice-enabled AI applications using a data-driven, functional approach. Built on top of clojure.core.async.flow
, it provides a composable pipeline architecture for processing audio, text, and AI interactions with built-in support for major AI providers.
Warning
While Simulflow has been used in live, production applications - it's still under active development. Expect breaking changes to support new usecases
Simulflow is a framework that uses processors that communicate through specialized frames to create voice-enabled AI agents. Think of it as a data pipeline where each component transforms typed messages:
Microphone Transport → (audio-in frames) → Transcriptor → (transcription frames) →
Context Aggregation → (context to LLM) → LLM → (streams response) →
Text Assembler → (sentence frames) → Text-to-Speech → (audio-out frames) →
Audio Splitter → (chunked audio) → Speaker Transport
This pipeline approach makes it easy to swap components, add new functionality, or debug individual stages without affecting the entire system.
- Installation
- Requirements
- Video presentation
- Core Features
- Quick Start Example
- Examples
- Supported Providers
- Key Concepts
- Adding Custom Processes
- Built With
- Acknowledgements
- License
;; Add to your deps.edn
{:deps {com.shipclojure/simulflow {:mvn/version "0.1.8-alpha"}}}
;; Add to your project.clj
[com.shipclojure/simulflow "0.1.8-alpha"]
<dependency>
<groupId>com.shipclojure</groupId>
<artifactId>simulflow</artifactId>
<version>0.1.8-alpha</version>
</dependency>
- Java 21+ - Required for virtual threads (Project Loom) support. If your java version doesn't support virtual threads,
simulflow
defaults to using normal threads. - Clojure 1.12+ - For core.async.flow and other modern Clojure features
- Flow-Based Architecture: Built on
core.async.flow
for robust concurrent processing - Data-First Design: Define AI pipelines as data structures for easy configuration and modification
- Streaming Architecture: Efficient real-time audio and text processing
- Extensible: Seamless to add new processors to embed into AI flows
- Flexible Frame System: Type-safe message passing between pipeline components
- Built-in Services: Ready-to-use integrations with major AI providers
First, create a resources/secrets.edn
:
{:deepgram {:api-key ""}
:elevenlabs {:api-key ""
:voice-id ""}
:groq {:api-key ""}
:openai {:new-api-sk ""}}
Obtain the API keys from the respective providers and fill in the blank values.
Start a REPL and evaluate the snippets in the (comment ...)
blocks to start the flows.
Allow Microphone access when prompted.
(ns simulflow-examples.local
{:clj-reload/no-unload true}
(:require
[clojure.core.async :as a]
[clojure.core.async.flow :as flow]
[simulflow.async :refer [vthread-loop]]
[simulflow.processors.activity-monitor :as activity-monitor]
[simulflow.processors.deepgram :as deepgram]
[simulflow.processors.elevenlabs :as xi]
[simulflow.processors.llm-context-aggregator :as context]
[simulflow.processors.openai :as openai]
[simulflow.secrets :refer [secret]]
[simulflow.transport :as transport]
[simulflow.transport.in :as transport-in]
[simulflow.transport.out :as transport-out]
[simulflow.utils.core :as u]
[simulflow.vad.silero :as silero]
[taoensso.telemere :as t]))
(defn make-local-flow
"This example showcases a voice AI agent for the local computer."
([] (make-local-flow {}))
([{:keys [llm-context extra-procs extra-conns debug? vad-analyser
language chunk-duration-ms]
:or {llm-context {:messages
[{:role "system"
:content "You are a voice agent operating via phone. Be
concise in your answers. The input you receive comes from a
speech-to-text (transcription) system that isn't always
efficient and may send unclear text. Ask for
clarification when you're unsure what the person said."}]}
language :en
debug? false
chunk-duration-ms 20
extra-procs {}
extra-conns []}}]
(flow/create-flow
{:procs
(u/deep-merge
{;; Capture audio from microphone and send raw-audio-input frames
:transport-in {:proc transport-in/microphone-transport-in
:args {:vad/analyser vad-analyser}}
;; raw-audio-input -> transcription frames
:transcriptor {:proc deepgram/deepgram-processor
:args {:transcription/api-key (secret [:deepgram :api-key])
:transcription/interim-results? true
:transcription/punctuate? false
:transcription/vad-events? false
:transcription/smart-format? true
:transcription/model :nova-2
:transcription/utterance-end-ms 1000
:transcription/language language}}
;; user transcription & llm message frames -> llm-context frames
:context-aggregator {:proc context/context-aggregator
:args {:llm/context llm-context
:aggregator/debug? debug?}}
;; Takes llm-context frames and produces llm-text-chunk & llm-tool-call-chunk frames
:llm {:proc openai/openai-llm-process
:args {:openai/api-key (secret [:openai :new-api-sk])
:llm/model "gpt-4o-mini"}}
;; llm-text-chunk & llm-tool-call-chunk -> llm-context-messages-append frames
:assistant-context-assembler {:proc context/assistant-context-assembler
:args {:debug? debug?}}
;; llm-text-chunk -> sentence speak frames (faster for text to speech)
:llm-sentence-assembler {:proc context/llm-sentence-assembler}
;; speak-frames -> audio-output-raw frames
:tts {:proc xi/elevenlabs-tts-process
:args {:elevenlabs/api-key (secret [:elevenlabs :api-key])
:elevenlabs/model-id "eleven_flash_v2_5"
:elevenlabs/voice-id (secret [:elevenlabs :voice-id])
:voice/stability 0.5
:voice/similarity-boost 0.8
:voice/use-speaker-boost? true
:pipeline/language language}}
;; audio-output-raw -> smaller audio-output-raw frames for realtime
:audio-splitter {:proc transport/audio-splitter
:args {:audio.out/duration-ms chunk-duration-ms}}
;; speakers out
:transport-out {:proc transport-out/realtime-speakers-out-processor
:args {:audio.out/sending-interval chunk-duration-ms
:audio.out/duration-ms chunk-duration-ms}}
:activity-monitor {:proc activity-monitor/process
:args {::activity-monitor/timeout-ms 5000}}}
extra-procs)
:conns (concat
[[[:transport-in :out] [:transcriptor :in]]
[[:transcriptor :out] [:context-aggregator :in]]
[[:transport-in :sys-out] [:context-aggregator :sys-in]]
[[:context-aggregator :out] [:llm :in]]
;; Aggregate full context
[[:llm :out] [:assistant-context-assembler :in]]
[[:assistant-context-assembler :out] [:context-aggregator :in]]
;; Assemble sentence by sentence for fast speech
[[:llm :out] [:llm-sentence-assembler :in]]
[[:llm-sentence-assembler :out] [:tts :in]]
[[:tts :out] [:audio-splitter :in]]
[[:audio-splitter :out] [:transport-out :in]]
;; Activity detection
[[:transport-out :sys-out] [:activity-monitor :sys-in]]
[[:transport-in :sys-out] [:activity-monitor :sys-in]]
[[:transcriptor :sys-out] [:activity-monitor :sys-in]]
[[:activity-monitor :out] [:context-aggregator :in]]
[[:activity-monitor :out] [:tts :in]]]
extra-conns)})))
(comment
(def local-ai (make-local-flow {:vad-analyser (silero/create-silero-vad)}))
;; Start local ai flow - starts paused
(let [{:keys [report-chan error-chan]} (flow/start local-ai)]
;; Resume local ai -> you can now speak with the AI
(flow/resume local-ai)
(vthread-loop []
(when-let [[msg c] (a/alts!! [report-chan error-chan])]
(when (map? msg)
(t/log! (cond-> {:level :debug :id (if (= c error-chan) :error :report)}
(= c error-chan) (assoc :error msg)) msg))
(recur))))
;; Stop the conversation
(flow/stop local-ai)
,)
Which roughly translates to:
For more complete examples and use cases, see the examples directory:
- Local Example - Complete voice AI agent using microphone and speakers
- Twilio WebSocket - Telephony integration for phone-based voice AI
- Transport Examples - Different audio input/output configurations
These examples show real-world usage patterns and can be used as starting points for your own applications.
- ElevenLabs
- Models:
eleven_multilingual_v2
,eleven_turbo_v2
,eleven_flash_v2
and more. - Features: Real-time streaming, multiple voices, multilingual support
- Models:
- Deepgram
- Models:
nova-2
,nova-2-general
,nova-2-meeting
and more. - Features: Real-time transcription, punctuation, smart formatting
- Models:
- OpenAI
- Models:
gpt-4o-mini
(fastest, cheapest),gpt-4
,gpt-3.5-turbo
and more - Features: Function calling, streaming responses
- Models:
- Google
- Models:
gemini-2.0-flash
(fastest, cheapest),gemini-2.5-flash
, and more - Features: Function calling, streaming responses, thinking
- Models:
- Groq
- Models:
llama-3.2-3b-preview
llama-3.1-8b-instant
llama-3.3-70b-versatile
etc - Features: Function calling, streaming responses, thinking
- Models:
The core building block of simulflow pipelines:
- Composed of processes connected by channels
- Processes can be:
- Input/output handlers
- AI service integrations
- Data transformers
- Managed by
core.async.flow
for lifecycle control
The modality through which audio comes and goes from the voice ai pipeline. Example transport modalities:
- local (microphone + speakers)
- telephony (twilio through websocket)
- webRTC (browser support) - TODO
- async (through in & out core async channels)
You will see processors like :transport-in
& :transport-out
The basic unit of data flow, representing typed messages like:
:simulflow.frame/audio-input-raw
- Raw audio data from input transport:simulflow.frame/transcription-result
- Transcribed text from speech-to-text:simulflow.frame/llm-text-chunk
- LLM response text chunks:simulflow.frame/llm-tool-call-chunk
- LLM tool call request chunks:simulflow.frame/audio-output-raw
- Raw audio data for playback:simulflow.frame/speak-frame
- Text for TTS processing:simulflow.frame/user-speech-start
,:simulflow.frame/user-speech-stop
- User speech events:simulflow.frame/bot-speech-start
,:simulflow.frame/bot-speech-stop
- Bot speech events:simulflow.frame/system-start
,:simulflow.frame/system-stop
- System control signals
Each frame has a type and optionally a schema for the data contained in it.
For development and debugging, you can enable frame schema validation to catch invalid frame data early. This should only be used during development as it adds runtime overhead:
# Enable frame schema checking via JVM property
clojure -J-Dsimulflow.frame.schema-checking=true -M:dev your-namespace
# Or add to your deps.edn :dev alias
{:aliases
{:dev {:jvm-opts ["-Dsimulflow.frame.schema-checking=true"]
...}}}
When enabled, creating frames with invalid data will throw exceptions with detailed error messages:
;; This will throw if schema checking is enabled and data is invalid
(frame/audio-input-raw "invalid-data") ; Should be byte array
;; => ex-info "Invalid frame data" {...}
Warning: Never enable schema checking in production as it significantly impacts performance.
Simulflow provides the defframe
macro to easily define new frame types with automatic validation and helper functions.
The defframe
macro creates three things for each frame type:
- Frame Creator Function - Creates frames with optional timestamp
- Frame Predicate Function - Tests if a value is a frame of that type
- Frame Schema - Malli schema for validation
(ns my.custom.frames
(:require [simulflow.frame :refer [defframe]]))
;; Define a custom frame type
(defframe custom-data
"Frame containing custom application data"
{:type ::custom-data-frame
:schema [:map
[:user-id :string]
[:action [:enum :create :update :delete]]
[:payload :any]]})
This generates:
;; 1. Frame creator function (supports both arities)
(custom-data {:user-id "123" :action :create :payload {...}})
(custom-data {:user-id "123" :action :create :payload {...}} {:timestamp 1640995200000})
;; 2. Frame predicate function
(custom-data? some-frame) ;; => true/false
;; 3. Frame schema (for advanced validation)
custom-data-schema ;; => Malli schema definition
Frame creator functions support flexible timestamp handling:
;; Use current timestamp (default)
(custom-data {:user-id "123" :action :create :payload data})
;; Explicit timestamp as milliseconds
(custom-data data {:timestamp 1640995200000})
;; Explicit timestamp as java.util.Date
(custom-data data {:timestamp #inst "2022-01-01T00:00:00.000Z"})
All frames have a consistent structure:
{:frame/type ::custom-data-frame ; Frame type keyword
:frame/data {:user-id "123" :action :create} ; Your data
:frame/ts #inst "2022-01-01T00:00:00.000Z" ; Timestamp
;; Plus metadata: ^{:type :simulflow.frame/frame}
}
Use your custom frames in processor transform functions:
(defn my-processor-transform [state input-port data]
(cond
(custom-data? data)
(let [user-id (get-in data [:frame/data :user-id])]
[state {:out [(frame/system-start true)]}])
:else [state {}]))
When frame schema checking is enabled, invalid data will be caught automatically:
;; This will throw if schema checking is enabled
(custom-data {:user-id 123 :action :invalid}) ; user-id should be string, action invalid
;; => ex-info "Invalid frame data" {:error {...}}
See frame.clj for all possible frames.
Components that transform frames:
- Define input/output requirements
- Can maintain state
- Use core.async for async processing
- Implement the
flow/process
protocol
(defn custom-processor []
(flow/process
{:describe (fn [] {:ins {:in "Input channel"}
:outs {:out "Output channel"}})
:init identity
:transform (fn [state in msg]
[state {:out [(process-message msg)]}])}))
Read core.async.flow docs for more information about flow precesses.
Simulflow processors are designed for modularity and reuse. Each processor can expose its core functionality as multi-arity functions that can be used independently or composed into custom processors.
Processors follow a standard multi-arity pattern that maps directly to core.async.flow
lifecycle:
(defn processor-fn
([] {:ins {:in "Description"} :outs {:out "Description"} :params {...}}) ; 0-arity: describe
([config] {...}) ; 1-arity: init
([state transition] {...}) ; 2-arity: transition
([state input-port data] [state {...}])) ; 3-arity: transform
Here's how you can reuse transport processor functions in your own custom processors:
(ns my-cool-processor
(:require [simulflow.transport :as transport]
[simulflow.frame :as frame]
[simulflow.utils.audio :as audio]))
(defn mic-transport-fn
"Custom microphone transport with audio processing"
([] (transport/mic-transport-in-describe))
([params] (transport/mic-transport-in-init! params))
([state transition]
(transport/mic-transport-in-transition state transition))
;; Custom transform with audio processing
([state _ {:keys [audio-data timestamp]}]
(let [processed-audio (audio/apply-noise-reduction audio-data)
float-audio (PCMConverter/convertToFloat32Buffer processed-audio)]
[state {:out [(frame/audio-input-raw float-audio {:timestamp timestamp})]}])))
;; Use in a flow
(def my-flow
(flow/create-flow
{:procs {:custom-mic {:proc (flow/process mic-transport-fn)
:args {:audio-in/sample-rate 16000}}}
:conns [[:custom-mic :out] [:next-processor :in]]}))
You can also compose transform logic from multiple processors:
(defn hybrid-processor-fn
([] {:ins {:in "Mixed input"} :outs {:out "Processed output"}})
([params] {:config params})
([state transition] (when (= transition :stop) (cleanup state)))
([state input-port data]
(cond
;; Handle audio using transport transform
(frame/audio-input-raw? data)
(transport/mic-transport-transform state input-port data)
;; Handle text using LLM transform
(frame/llm-context? data)
(openai/transform state input-port data)
;; Custom handling for other frames
:else
[state {:out [(custom-transform data)]}])))
- Reusability: Use processor logic across different flows
- Testability: Test individual transform functions in isolation
- Composability: Mix and match functionality from different processors
- Customization: Override specific behaviors while reusing core logic
- Debugging: Easier to debug individual components
This pattern enables building complex AI pipelines by composing smaller, well-tested components while maintaining the data-driven architecture that makes simulflow powerful.
- core.async - Concurrent processing
- core.async.flow - Flow control
- Hato - WebSocket support
- Malli - Schema validation
Voice-fn takes heavy inspiration from pipecat. Differences:
- simulflow uses a graph instead of a bidirectional queue for frame transport
- simulflow has a data centric implementation. The processors in simulflow are
pure functions in the
core.async.flow
transform syntax
MIT