Skip to content
107 changes: 107 additions & 0 deletions book/linearalgebra.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1001,6 +1001,24 @@ \section*{Vector Combinations}
objects (like line segments or polygons).
\end{itemize}

Before you read this section, make sure you are comfortable with the following tasks.
Please do the ``Quick Check'' problem to see if you are comfortable with each
task.
\begin{itemize}
\item Distinguishing between two kinds of quantifiers

\item[] Quick Check: Let $\mathbb{L}$ be the set of English letters. Let $S=\Set
{e,\ell,a}$. Write down a subset $T_{1}$ of $\mathbb{L}$ so that \emph{some}
elements of $S$ are in $T_{1}$. Write down another subset $T_{2}$ of
$\mathbb{L}$ so that \emph{all} elements of $S$ are in $T_{2}$.

\item Visualizing vector addition and scalar multiplication.

\item[] Quick Check: On a coordinate sheet, draw the vector $\vec v_{1} = (1,
0)$ and $\vec v_{2} = (1,1)$. Draw the set of all scalar multiples of
$\vec v_{1}$. Draw the vector $\vec v_{1} + \vec v_{2}$.
\end{itemize}

\input{modules/module2.tex}
\input{modules/module2-exercises.tex}

Expand Down Expand Up @@ -1594,6 +1612,27 @@ \section*{Lines and Planes}
\item How to find linearly independent subsets.
\end{itemize}

Before you read this section, make sure you are comfortable with the following tasks.
Please do the ``Quick Check'' problem to see if you are comfortable with each
task.
\begin{itemize}
\item Understanding the definition of linear combination

\item[] Quick Check: Write down the set of all linear combinations of
$\mat{2 \\ 3}$ and $\mat{4 \\ 6}$ using set-builder notation. Is $\mat{2 \\ 2}$a
linear combination of these two vectors?

\item Solving simple systems of linear equations

\item[] Quick Check: Solve the system of linear equations
$\systeme{x+2y=7, -x+3y=8}$.

\item Working with lines and planes

\item[] Quick Check: Let $\mathcal{L}$ be the line passing through $(1,0)$ and $(2,4)$.
Write down the vector form of $\mathcal{L}$.
\end{itemize}

\input{modules/module3.tex}
\input{modules/module3-exercises.tex}
\end{module}
Expand Down Expand Up @@ -2376,6 +2415,27 @@ \section*{Linear Independence and Dependence, Creating Examples}
\item The \emph{normal form} of lines, planes, and hyperplanes.
\end{itemize}

Before you read this section, make sure you are comfortable with the following tasks.
Please do the ``Quick Check'' problem to see if you are comfortable with each
task.
\begin{itemize}
\item Working with triangle ratios

\item[] Quick Check: Define $\cos$, $\sin$, and $\tan$ of an arbitrary angle
(not necessarily acute).

\item Using Pythagoras' theorem

\item[] Quick Check: In triangle $\mathbf{ABC}$, $\widehat{ABC}=90^{\circ}$.
Suppose the length of $\overline{AB}$ and $\overline{BC}$ are $5$ and
$12$ respectively. What's the length of $\overline{AC}$?

\item Working with spans and translated spans

\item[] Quick Check: Express the line passing through $(2,3)$ and $(4,6)$ as a span or a translated
span.
\end{itemize}

\input{modules/module4.tex}
\input{modules/module4-exercises.tex}
\end{module}
Expand Down Expand Up @@ -3040,6 +3100,24 @@ \section*{Dot Product}
\item How to project a vector onto a line.
\end{itemize}

Before you read this section, make sure you are comfortable with the following tasks.
Please do the “Quick Check” problem to see if you are comfortable with each task.
\begin{itemize}
\item Working with dot product

\item[] Quick Check: Let $\vec x=(4,2)$, $y=(2,-4)$. Calculate
$\vec x\cdots \vec y$. What does this tell you about $\vec x$ and $\vec y$?

\item Calculating the norm of a vector

\item[] Let $\vec x=(7,-24)$. Calculate $\abs{\vec x}$.

\item Working with normal form of a line

\item[] Let $\mathcal{L}$ be given by $\mat{3 \\ 2}\cdot (\vec x-\mat{4 \\ 7}
)=0$. Write down a normal vector and a direction vector of $\mathcal{L}$.
\end{itemize}

\input{modules/module5.tex}
\input{modules/module5-exercises.tex}

Expand Down Expand Up @@ -3479,6 +3557,35 @@ \section*{Projections}
\item How to find a basis for and the dimension of a subspace.
\end{itemize}

Before you read this section, make sure you are comfortable with the following tasks.
Please do the “Quick Check” problem to see if you are comfortable with each task.
\begin{itemize}
\item Working with spans

\item[] Quick Check: Let $S=\Span\Set{\mat{4 \\ 2}, \mat{8 \\ 4}}$. What's the
geometric meaning of $S$? If $\vec v_{1},\vec v_{2}\in S$, is $\vec v_{1}
+\vec v_{2}\in S$?

\item Working with simple definitions

\item[] Quick Check: A subset $\mathbb{S}$ of $\mathbb{Z}$ is called an $I$-subset
if for all $s\in\mathbb{S}$ and $r\in\mathbb{Z}$, we have $rs\in\mathbb{S}$.
Is the set of all even numbers an $I$-subset? Is the set of all odd numbers
an $I$-subset? Justify your answer.

\item Verifying if a set is linearly (in)dependent

\item[] Quick Check: Let $\vec v_{1}=\mat{1 \\ 0 \\ 0}$, $\vec v_{2}=\mat{4 \\ 2 \\ 0}$,
and $\vec v_{3} = \mat{0 \\ 4 \\ 2}$. Is the set $\Set{\vec v_1, \vec v_2, \vec v_3}$
linearly independent?

\item Verifying if a set spans the whole space

\item[] Quick Check: Let $\vec v_{1},\vec v_{2}, \vec v_{3}$ be given as in
the previous Quick Check problem. Prove that $\Span\Set{\vec v_1,\vec v_2,\vec v_3}
=\R^{3}$.
\end{itemize}

\input{modules/module6.tex}
\input{modules/module6-exercises.tex}
\end{module}
Expand Down
152 changes: 108 additions & 44 deletions book/modules/module14-exercises.tex
Original file line number Diff line number Diff line change
@@ -1,87 +1,151 @@
\begin{exercises}
\begin{problist}
\prob Let $\mathcal T:\R^{2}\to\R^{2}$ be defined by
$\mathcal T\mat{x\\y}=\matc{3x-y\\x-\tfrac{1}{4}y}$. Find the volume
of $\mathcal T(C_{2})$.
\prob Let $\mathcal{T}:\R^{2}\to\R^{2}$ be defined by $\mathcal{T}\mat{x\\y}
=\matc{3x-y\\x-\tfrac{1}{4}y}$. Find the volume of $\mathcal{T}(C_{2})$.

\prob Let $\mathcal S:\R^{3}\to\R^{3}$ be defined by
$\mathcal S\mat{x\\y\\z}=\matc{2x+y+z\\x-\tfrac{1}{2}y\\z}$. Find
the volume of $\mathcal S(C_{3})$.
\prob Let $\mathcal{S}:\R^{3}\to\R^{3}$ be defined by
$\mathcal{S}\mat{x\\y\\z}=\matc{2x+y+z\\x-\tfrac{1}{2}y\\z}$. Find the volume
of $\mathcal{S}(C_{3})$.

\prob Let $\mathcal T:\R^{2}\to\R^{2}$ be defined by
$\mathcal T\mat{x\\y}=\matc{x+2y\\-x-y}$.
\prob Let $\mathcal{T}:\R^{2}\to\R^{2}$ be defined by $\mathcal{T}\mat{x\\y}
=\matc{x+2y\\-x-y}$.
\begin{enumerate}
\item draw $\mathcal{E}$ and $\mathcal{T}(\mathcal{E})$ and
then determine whether $\mathcal{T}$ is orientation
preserving or orientation reversing.
\item Draw $\mathcal{E}$ and $\mathcal{T}(\mathcal{E})$ and then determine
whether $\mathcal{T}$ is orientation preserving or orientation reversing.

\item Find $\det(\mathcal T)$.
\item Find $\det(\mathcal{T})$.
\end{enumerate}

\prob For each linear transformation defined below, find its
determinant.
\prob For each linear transformation defined below, find its determinant.
\begin{enumerate}
\item $\mathcal S:\R^{2}\to\R^{2}$, where $\mathcal S$
shortens
\item $\mathcal{S}:\R^{2}\to\R^{2}$, where $\mathcal{S}$ shortens
every vector by a factor of $\tfrac{2}{3}$.

\item $\mathcal R:\R^{2}\to\R^{2}$, where $\mathcal R$
is rotation counter-clockwise by $90^{\circ}$.
\item $\mathcal{R}:\R^{2}\to\R^{2}$, where $\mathcal{R}$ is rotation
counter-clockwise by $90^{\circ}$.

\item $\mathcal F:\R^{2}\to\R^{2}$, where $\mathcal F$
is reflection across the line $y=-x$.
\item $\mathcal{F}:\R^{2}\to\R^{2}$, where $\mathcal{F}$ is
reflection across the line $y=-x$.

\item $\mathcal G:\R^{2}\to\R^{2}$, where
$\mathcal G(\vec x)=\mathcal{P}(\vec x)+
\mathcal{Q}(\vec x)$ and where $\mathcal{P}$ is projection onto the
line $y=x$ and $\mathcal{Q}$ is projection onto
the line $y=-\tfrac{1}{2}x$.
\item $\mathcal{G}:\R^{2}\to\R^{2}$, where
$\mathcal{G}(\vec x)=\mathcal{P}(\vec x)+ \mathcal{Q}(\vec x)$
and where $\mathcal{P}$ is projection onto the line $y=x$ and
$\mathcal{Q}$ is projection onto the line $y=-\tfrac{1}{2}x$.

\item $\mathcal T:\R^{3}\to\R^{3}$, where
$\mathcal T\mat{x\\y\\z}=\matc{x-y+z\\z+x-\tfrac{1}{3}y\\z}$.
\item $\mathcal{T}:\R^{3}\to\R^{3}$, where
$\mathcal{T}\mat{x\\y\\z}=\matc{x-y+z\\z+x-\tfrac{1}{3}y\\z}$.

\item $\mathcal J:\R^{3}\to\R^{3}$, where
$\mathcal J\mat{x\\y\\z}=\matc{0\\0\\x+y+z}$.
\item $\mathcal{J}:\R^{3}\to\R^{3}$, where
$\mathcal{J}\mat{x\\y\\z}=\matc{0\\0\\x+y+z}$.

\item $\mathcal K\circ \mathcal H:R^{2}\to\R^{2}$, where
$\mathcal H\mat{x\\y}=\matc{x+2y\\-x-y}$,
\item $\mathcal{K}\circ \mathcal{H}:\R^{2}\to\R^{2}$, where
$\mathcal{H}\mat{x\\y}=\matc{x+2y\\-x-y}$,

and $\mathcal K\mat{x\\y}=\matc{-x-2y\\x+y}$.
and $\mathcal{K}\mat{x\\y}=\matc{-x-2y\\x+y}$.
\end{enumerate}

\prob Let $A=\mat{2&3\\1&5}$.
\begin{enumerate}
\item Use elementary matrices to find $\det(A)$.

\item Draw a picture of the parallelogram given by the rows
of $A$.
\item Draw a picture of the parallelogram given by the rows of $A$.
\label{PROBMOD14-rows}

\item Draw a picture of the parallelogram given by the columns
of $A$.
\item Draw a picture of the parallelogram given by the columns of $A$.
\label{PROBMOD14-cols}
\item How do the areas of the parallelograms drawn in parts \ref{PROBMOD14-rows} and
\ref{PROBMOD14-cols} relate?

\item How do the areas of the parallelograms drawn in parts \ref{PROBMOD14-rows}
and \ref{PROBMOD14-cols} relate?
\end{enumerate}

\prob Let $A=\mat{1&2&0\\0&2&1\\1&2&3}$.
\begin{enumerate}
\item \label{Module14-q8} Use elementary matrices to
find $\det(A)$.
\item \label{Module14-q8} Use elementary matrices to find $\det(A)$.

\item Find $\det(A^{-1})$.

\item Find $\det(A^{T})$, and compare your answer with
\ref{Module14-q8}. Are they the same? Explain.
\end{enumerate}

\prob Let $A$ be an $n \times n$ matrix that can be decomposed into
the product of elementary matrices.
\prob Let $A$ be an $n \times n$ matrix that can be decomposed into the
product of elementary matrices.
\begin{enumerate}
\item What is $\Rank(A)$? Justify your answer.

\item What is $\Null(A^{-1})$? Justify your answer.
\end{enumerate}
\end{problist}
\end{exercises}
\prob Anna and Ella are studying the relationship between determinant and
volume. In particular, they are studying $\mathcal{S}:\mathbb{R}^{3}\rightarrow
\mathbb{R}^{3}$ defined by $\mathcal{S}\mat{x \\ y \\ z}=\mat{4x \\ 2z \\ 0}$,
and $\mathcal{T}:\mathbb{R}^{3}\rightarrow\mathbb{R}^{2}$ defined by
$\mathcal{T}\mat{x \\ y \\ z}=\mat{2x \\ 8z}$.

For each conversation below, (a) evaluate Anna and Ella's arguments as \emph{correct},
\emph{mostly correct}, or \emph{incorrect}; (b) point out where each argument
makes correct/incorrect statements; (c) give a correct numerical value
for the determinant or explain why it doesn't exist.
\begin{enumerate}
\item \emph{Anna says:}

Since the image of $C_{3}$ under $\mathcal{S}$ is the
parallelepiped generated by
$\mat{4 \\ 0 \\ 0},\mat{0 \\ 0 \\ 0}, and \mat{0 \\ 2 \\ 0}$, which
is 2-dimensional parallelogram, the volume of
$\mathcal{S}(C_{3})$ is just the area of this parallelogram, which
is 8. Thus, $\det(\mathcal{S})=8$.

\emph{Ella says:}

$\det(\mathcal{S})$ is undefined, because $\mathcal{S}$ is not
invertible.

\item \emph{Anna says:}

Since the image of $C_{3}$ under $\mathcal{T}$ is the
parallelepiped generated by $\mat{2 \\ 0}$, $\mat{0 \\ 0}$, and
$\mat{0 \\ 8}$, which is a parallelogram in $\mathbb{R}^{2}$,
the signed volume of $\mathcal{T}(C_{3})$ is just the signed
area of this parallelogram, which is 16. Thus,
$\det(\mathcal{T})=16$.

\emph{Ella says:}

$\det(\mathcal{T})$ is undefined, because $\det(\mathcal{T})$ is
only defined when the domain and codomain of $\mathcal{T}$ are
the same.
\end{enumerate}
\begin{solution}
\begin{enumerate}
\item \emph{Anna's argument is incorrect.}

\emph{Reason:} Since $\mathcal{S}$ is a linear
transformation on $\R^{3}$, its determinant is given by the signed
change of \emph{3-dimensional volume}. Anna's argument is incorrect
because she considered the 2-dimensional volume of $\mathcal{S}
(C_{3})$.

\emph{Ella's argument is incorrect.}

\emph{Reason:} The determinant is defined for all linear
transformations from $\R^{n}$ to $\R^{n}$, no matter whether
it is invertible or not.

Finally, $\det(\mathcal{S})=0$, because since $\mathcal{S}(C_{3}
)$ is a \emph{2-dimensional} object in $\R^{3}$, its \emph{3-dimensional
volume} is $0$. Therefore, $\VolChange(\mathcal{S})=0$, and we
conclude that $\det(\mathcal{S})=0$.

\item \emph{Anna's argument is incorrect.}

\emph{Reason:} The determinant function is only defined for
linear transformations with same domain and codomain.

\emph{Ella's argument is correct.}

Finally, $\det(\mathcal{T})$ is undefined, because the domain
and codomain of $\mathcal{T}$ are not the same.
\end{enumerate}
\end{solution}
\end{problist}
\end{exercises}