This repo aims to provide a fast simulation and RL training framework for a quadruped locomotion task by dynamically predicting the weight parameters of a MPC controller. The control framework is a hierarchical controller composed of a higher-level policy network and a lower-level model predictive controller.
The MPC controller refers to Cheetah Software but written in python, and it completely opens the interface between sensor data and motor commands, so that the controller can be easily ported to any mainstream simulators.
The RL training utilizes the NVIDIA Isaac Gym in parallel using Unitree Robotics Aliengo model, and transferring it from simulation to reality on a real Aliengo robot (sim2real is not included in this codebase).
- Python - 3.8
- PyTorch - 1.10.0 with CUDA 11.3
- Isaac Gym - Preview 4
- Clone this repository
git clone [email protected]:silvery107/rl-mpc-locomotion.git
- Initialize submodules
Or use the
git submodule update --init
--recurseoption in step 1 to clone submodules at the same time. - Create the conda environment:
conda env create -f environment.yml
- Install
rsl_rlat commit 2ad79cf under<extern>foldercd extern/rsl_rl pip install -e .
- Compile python binding of the MPC solver:
pip install -e .
-
Play the MPC controller on Aliengo:
python RL_MPC_Locomotion.py --robot=Aliengo
All supported robot types are
Go1,A1andAliengo.Note that you need to plug in your Xbox-like gamepad to control it, or pass
--disable-gamepad. The controller mode is default toFsm(Finite State Machine), and you can also tryMinfor the minimum MPC controller without FSM.-
Gamepad keymap
Press
LBto switch gait types betweenTrot,WalkandBound.Press
RBto switch FSM states betweenLocomotionandRecovery Stand
-
-
Train a new policy:
cd RL_Environment python train.py task=Aliengo headless=FalsePress the
vkey to disable viewer updates, and press again to resume. Setheadless=Trueto train without rendering.Tensorboard support is available, run
tensorboard --logdir runs. -
Load a pretrained checkpoint:
python train.py task=Aliengo checkpoint=runs/Aliengo/nn/Aliengo.pth test=True num_envs=4
Set
test=Falseto continue training. -
Run the pretrained weight-policy for MPC controller on Aliengo: Set
bridge_MPC_to_RLtoFalsein<MPC_Controller/Parameters.py>python RL_MPC_Locomotion.py --robot=Aliengo --mode=Policy --checkpoint=path/to/ckpt
If no
checkpointis given, it will load the latest run.
- MPC Controller
- Quadruped,
- RobotRunner ->
- RL Environment
- Gamepad Reader,
- Simulation Utils,
- Weight Policy,
- Train ->
- Setup a Simulation in Isaac Gym
- Install MIT Cheetah Software
- OSQP, qpOASES and CVXOPT Solver Instructions
- Development Logs






