This repository contains experiments on using Small Language Models (SLMs) like SmolLM2 to perform:
- Financial Sentiment Analysis
- Financial Document Summarization
- Financial QA using tabular/textual reasoning
We evaluate fine-tuning strategies including LoRA, sequential transfer learning, and multi-task learning via X-LoRA.
224UProject/
├── data/ # Preprocessed datasets
│ ├── finsentiment/
│ ├── earningscallsum/
│ └── tatqa_finqa/
├── models/ # Base and fine-tuned checkpoints
│ ├── base/
│ ├── lora/
│ └── xlora/
├── experiments/ # Hypothesis-driven experiments
│ ├── h1_sentiment_transfer/
│ ├── h2_hierarchical_summarization/
│ └── h3_xlora_multitask/
├── evaluation/ # Metrics, plotting, hallucination analysis
├── utils/ # Config parser, logging, seeds
├── configs/ # YAML configs per experiment
├── scripts/ # Shell/Python launchers
├── results/ # Evaluation outputs and logs
├── requirements.txt # Project dependencies
└── README.md