Skip to content

skorotkiewicz/llmnet

Repository files navigation

🌐 LLMNet

The Offline Internet. A premium, private, and AI-powered search experience that lives entirely on your machine.

LLMNet transforms your local LLMs into a structured search engine. It combines the power of local generative AI with a high-performance Vector Database (RAG) to provide instant, offline answers from your own knowledge base.

LLMNet Results

Home Page - Screenshot

LLMNet Home


✨ Key Features

  • 🔒 100% Private: Your queries and data never leave your local network.
  • 🧠 Local RAG: Index any website or wiki into a persistent Postgres Vector DB.
  • ⚡ Instant Results: Sub-second semantic search using pgvector & HNSW indexing.
  • 🎨 Premium UI: A glassmorphic, dark-mode interface inspired by modern search engines.
  • 🌐 No Internet Required: Once indexed, your knowledge stays available offline.

🛠️ Tech Stack

  • Frontend: Next.js, Tailwind CSS
  • Intelligence: Local LLMs (via OpenAI-compatible APIs)
  • Database: PostgreSQL with pgvector
  • Orchestration: Bun, Cheerio (Crawl), Turndown (Markdown)

🚀 Quick Start

1. Requirements

Ensure you have the following running locally:

  • LLM Server: Port configured in .env (e.g., Llama.cpp, Ollama)
  • Embedding Server: Port configured in .env
  • Database: Postgres with the vector extension (see postgres-pgvector/)

2. Configuration

Configure your environment variables in .env:

# Example configuration
API_BASE_URL=http://localhost:8888/v1
EMBEDDING_URL=http://localhost:8889/v1/embeddings

3. Setup & Run

# Install dependencies
bun install

# Initialize Database
bun postgres-pgvector/migrate.ts

# Start the engine
bun dev

Visit localhost:3000 to start searching.


⊕ Add Knowledge

LLMNet features a recursive ingestion pipeline. Simply paste a documentation URL or a GitHub Wiki link into the Indexer, and the system will:

  1. Crawl the site (Recursive BFS).
  2. Convert content to clean Markdown.
  3. Chunk text using a Recursive Character Splitter.
  4. Embed & Store vectors for semantic retrieval.

Built for those who value privacy and data sovereignty.