Skip to content

πŸ€– AI-Powered Backend Builder Multi-agent + multi-tool system using AutoGen, Gemini & Groq to automate production-ready backend development. Features 4 specialized AI agents, MCP integration, and end-to-end automation. Perfect for rapid API development with built-in security & testing. πŸ”§ Tech: Python, AutoGen, Gemini, Groq, MCP, FastAPI, Docker

Notifications You must be signed in to change notification settings

skyline-GTRr32/production-ready-backend-builder-multi-agent-with-multi-tool-system-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– Multi-Agent + Multi-Tool Backend Builder System

A sophisticated system that combines multiple AI agents with multiple tools (MCP + Custom Tools) to automatically design, generate, and manage production-ready backend applications. Built with AutoGen, Gemini, and Groq APIs, this system showcases advanced capabilities in both multi-agent collaboration and multi-tool utilization.

Note: This project extends beyond a standard multi-tool agent implementation by integrating multiple specialized agents that can leverage multiple tools in a coordinated fashion, creating a more powerful and flexible system than either approach alone.

🎯 Overview

This system employs four specialized AI agents that collaborate to build complete backend applications:

  • 🧠 Architect Agent: Plans system architecture and design
  • πŸ’» Coder Agent: Implements code based on architecture plans
  • βš™οΈ Ops Agent: Handles deployment, testing, and operations
  • πŸ” Reviewer Agent: Ensures production readiness and quality

✨ Key Features

Multi-Agent System

  • Specialized Agents: Four distinct AI agents with specific roles and responsibilities
  • Collaborative Workflow: Agents work together in a coordinated pipeline
  • Role-Based Access: Each agent has specific permissions and tool access
  • Distributed Knowledge: Different agents maintain different aspects of project state

Multi-Tool Capabilities

  • MCP Server Integration: Seamless interaction with external MCP servers
  • Custom Tools: Specialized tools for code generation, validation, and testing
  • Tool Chaining: Ability to combine multiple tools in sequence
  • Dynamic Tool Selection: Agents can choose the right tool for each task

Development Features

  • Production-Ready Code: Enforces comprehensive production checklist
  • Incremental Development: 20% phases with user feedback loops
  • Multi-LLM Strategy: Gemini for reasoning, Groq for fast code generation
  • Security-First: Built-in security validation and best practices
  • Quality Assurance: Automated code review and testing
  • Modular Architecture: Easily extensible agent system
  • Real-time Collaboration: Agents work together to solve complex tasks
  • Comprehensive Testing: Built-in test generation and execution

πŸ› οΈ System Capabilities

What It Can Create

  • RESTful APIs: Complete backend services with proper endpoints
  • Database Schemas: SQL and NoSQL database designs
  • Authentication Systems: Secure user management and access control
  • WebSocket Services: Real-time communication endpoints
  • Background Tasks: Asynchronous job processing
  • API Documentation: Interactive API documentation (Swagger/OpenAPI)
  • Test Suites: Comprehensive test coverage
  • Docker Configurations: Containerization setup
  • CI/CD Pipelines: Automated testing and deployment workflows

Tools Integration

  • MCP Filesystem: For file operations within the workspace
  • MCP Terminal: For executing shell commands
  • Code Analysis Tools: For quality and security checks
  • Version Control: Git integration for code management
  • Dependency Management: Automatic requirements tracking

πŸ—οΈ Architecture

Multi-Agent System/
β”œβ”€β”€ agents/                 # AI Agent implementations
β”‚   β”œβ”€β”€ architect.py       # System design & planning
β”‚   β”œβ”€β”€ coder.py          # Code implementation
β”‚   β”œβ”€β”€ ops.py            # Operations & testing
β”‚   └── reviewer.py       # Quality assurance
β”œβ”€β”€ config/               # Configuration management
β”‚   β”œβ”€β”€ gemini_config.json
β”‚   β”œβ”€β”€ groq_config.json
β”‚   └── tools_config.json
β”œβ”€β”€ utils/                # Utilities
β”‚   └── mcp_client.py     # MCP server integration
β”œβ”€β”€ workspace/            # Generated projects go here
β”œβ”€β”€ main.py              # Main orchestrator
└── production_checklist.md # Quality standards

πŸš€ Quick Start

1. Prerequisites

  • Python 3.8+
  • Virtual environment (recommended)
  • Gemini API key
  • Groq API key (optional but recommended)

2. Installation

# Clone or navigate to the project directory
cd multi-tool-agent

# Install dependencies
pip install -r requirements.txt

# Install MCP Terminal server
npm install -g @dillip285/mcp-terminal

3. Configuration

  1. Set up API keys in .env:
# Copy and edit the .env file
cp .env .env.local

# Edit .env.local with your actual API keys
GEMINI_API_KEY=your_gemini_api_key_here
GROQ_API_KEY=your_groq_api_key_here
  1. MCP Server Setup: The system uses external MCP servers:
    • Filesystem MCP: https://www.claudemcp.com/servers/filesystem
    • Terminal MCP: @dillip285/mcp-terminal (locally hosted)

4. Usage

Basic Usage

python main.py --project "AI Chat Backend" --description "Build a FastAPI backend for AI-powered chat with user authentication"

Full Build (No Incremental Feedback)

python main.py --project "Content Generator API" --description "AI content generation service with rate limiting" --full

πŸ“‹ Production Checklist

The system enforces a comprehensive production checklist covering:

  • βœ… Core Application: Environment variables, dependencies, project structure
  • βœ… Code Quality: PEP8, error handling, logging, modularization
  • βœ… Security: Input validation, authentication, secrets management
  • βœ… LLM Safeguards: Prompt templates, output validation, cost tracking
  • βœ… Testing: Unit tests, integration tests, coverage goals
  • βœ… Observability: Structured logging, metrics, health checks
  • βœ… Performance: Async patterns, caching, efficient queries
  • βœ… Deployment: Docker configs, environment management
  • βœ… Documentation: README, API docs, code documentation

πŸ”„ Workflow

Incremental Development (Default)

  1. Architecture Planning (20%)

    • Architect Agent designs system structure
    • User reviews and approves plan
  2. Core Implementation (40%)

    • Coder Agent implements basic structure
    • Ops Agent sets up environment
    • User tests basic functionality
  3. API & Features (60%)

    • Complete API implementation
    • Add advanced features
    • User validates functionality
  4. Testing & Quality (80%)

    • Comprehensive testing setup
    • Code quality validation
    • Security review
  5. Production Readiness (100%)

    • Final production checklist validation
    • Deployment preparation
    • Documentation completion

Agent Responsibilities

🧠 Architect Agent

  • Role: Senior backend architect
  • Tools: Gemini API for complex reasoning
  • Outputs: System design, API specifications, database schema

πŸ’» Coder Agent

  • Role: Backend developer
  • Tools: Groq (fast) + Gemini (complex), Filesystem MCP
  • Outputs: FastAPI applications, database models, configuration files

βš™οΈ Ops Agent

  • Role: DevOps engineer
  • Tools: Terminal MCP
  • Outputs: Test execution, server management, deployment scripts

πŸ” Reviewer Agent

  • Role: Senior code reviewer
  • Tools: Gemini API, Filesystem MCP
  • Outputs: Code quality reports, security analysis, production readiness validation

πŸ› οΈ Configuration

LLM Configuration

Gemini (Complex reasoning tasks):

  • Architecture planning
  • Code review and analysis
  • Security validation
  • Complex problem solving

Groq (Fast code generation):

  • Code implementation
  • Simple transformations
  • Quick responses

MCP Server Configuration

The system integrates with external MCP servers for secure operations:

{
  "mcp_servers": {
    "filesystem": {
      "url": "https://www.claudemcp.com/servers/filesystem",
      "workspace_path": "./workspace"
    },
    "terminal": {
      "command": "npx",
      "args": ["@dillip285/mcp-terminal", "--allowed-paths", "./workspace"]
    }
  }
}

πŸ“ Generated Projects

All generated projects are created in the workspace/ directory with:

  • FastAPI application with proper structure
  • Database models (SQLAlchemy)
  • API endpoints with validation
  • Configuration management
  • Testing setup
  • Docker configuration
  • Documentation

Example generated structure:

workspace/ai-chat-backend/
β”œβ”€β”€ main.py              # FastAPI application
β”œβ”€β”€ app/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ config.py        # Configuration management
β”‚   β”œβ”€β”€ models.py        # Database models
β”‚   └── routers/         # API endpoints
β”œβ”€β”€ tests/               # Test suite
β”œβ”€β”€ requirements.txt     # Dependencies
β”œβ”€β”€ .env.example        # Environment template
β”œβ”€β”€ Dockerfile          # Container configuration
└── README.md           # Project documentation

πŸ”’ Security Features

  • Input Validation: All endpoints include proper validation
  • Authentication: JWT-based auth when needed
  • Rate Limiting: Built-in rate limiting for APIs
  • Security Headers: Proper CORS and security middleware
  • Secrets Management: Environment-based configuration
  • SQL Injection Prevention: Parameterized queries

πŸ§ͺ Testing

The system generates comprehensive test suites:

  • Unit Tests: Core logic testing
  • Integration Tests: API endpoint testing
  • Security Tests: Vulnerability scanning
  • Performance Tests: Load testing setup

Run tests for generated projects:

cd workspace/your-project
pytest -v

πŸ“Š Monitoring & Observability

Generated applications include:

  • Health Check Endpoints: /health, /ready
  • Structured Logging: JSON formatted logs
  • Metrics Collection: Request/response metrics
  • Error Tracking: Comprehensive error handling

πŸš€ Deployment

Generated projects are deployment-ready with:

  • Docker Support: Multi-stage Dockerfiles
  • Environment Configuration: Dev/staging/prod configs
  • Database Migrations: Alembic setup
  • CI/CD Ready: GitHub Actions templates

πŸ”§ Troubleshooting

Common Issues

  1. MCP Server Connection Failed

    # Ensure MCP terminal server is installed
    npm install -g @dillip285/mcp-terminal
    
    # Check if server is accessible
    npx @dillip285/mcp-terminal --help
  2. API Key Issues

    # Verify API keys are set
    echo $GEMINI_API_KEY
    echo $GROQ_API_KEY
  3. Permission Errors

    # Ensure workspace directory is writable
    chmod 755 workspace/

Debug Mode

Enable detailed logging:

export LOG_LEVEL=DEBUG
python main.py --project "Test Project" --description "Test description"

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • AutoGen Framework: Multi-agent orchestration
  • Google Gemini: Advanced reasoning capabilities
  • Groq: Fast inference for code generation
  • MCP Protocol: Secure tool integration
  • FastAPI: Modern Python web framework

Built with ❀️ by the Multi-Agent Backend Builder System

For support or questions, please open an issue in the repository.

About

πŸ€– AI-Powered Backend Builder Multi-agent + multi-tool system using AutoGen, Gemini & Groq to automate production-ready backend development. Features 4 specialized AI agents, MCP integration, and end-to-end automation. Perfect for rapid API development with built-in security & testing. πŸ”§ Tech: Python, AutoGen, Gemini, Groq, MCP, FastAPI, Docker

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages