YoloView - YOLOv5 / YOLOv8 / YOLOv9 / YOLOv10 / YOLOv11 / YOLOv12 / RTDETR / SAM / MobileSAM / PP-OCR GUI based on Pyside6
YoloView is a user interface (GUI) application that supports Ultralytics-based YOLOv5
YOLOv8
YOLOv9
YOLOv10
YOLOv11
YOLOv12
RT-DETR
SAM
MobileSAM
FastSAM
PP-OCR
models.
English | 한국어
- Add
YOLOv8
YOLOv9
YOLOv10
YOLO11
YOLO12
RT-DETR
SAM
MobileSAM
FastSAM
PP-OCR
Model - Support Instance Segmentation (
YOLOv5
YOLOv8
YOLOv11
SAM
MobileSAM
FastSAM
) - Support Pose Estimation (
YOLOv8 ~ 12
) - Support Oriented Bounding Boxes (
YOLOv8 ~ 12
) - Support Http Protocol in
RTSP
Function (Single
Mode ) - Add Model Comparison Mode(VS Mode)
- Support Dragging File Input
-
YOLO11 ~ 12
has additional features (obb,pose,deteced,segment,track) - Tracking & Counting (
YOLOv8 ~ 12
) - Added bbox and segment category filter functions (under model selection function)
- Added bbox and segment label verification function(
bbox-valid.pt
&seg-valid.pt
) - Added subfolder navigation feature (only when browsing folders)
- Improved and enhanced statistics
- Save Labal
- Image Navigation Controls (<<,< ,>, >>)
Choose Image / Video / Webcam / Folder (Batch) / IPCam in the menu bar on the left to detect objects.
When the program is running to detect targets, you can change models / hyper Parameters
- Support changing model in YOLOv5 / YOLOv8 / YOLOv9 / YOLOv10 / YOLOv11 / RTDETR / YOLOv5-seg / YOLOv8-seg YOLOv11-seg / YOLOv8-pose / YOLOv11-pose / YOLOv8-obb / YOLOv11-obb / SAM / MobileSAM / FastSAM dynamically
- Support changing
IOU
/Confidence
/Delay time
/line thickness
dynamically
Our program will automatically detect pt
files including YOLOv5 Models / YOLOv8 Models / YOLOv9 Models / YOLOv10 Models that were previously added to the ptfiles
folder.
If you need add the new pt
file, please click Import Model
button in Settings
box to select your pt
file. Then our program will put it into ptfiles
folder.
Notice :
- All
pt
files are named includingyolov5
/yolov8
/yolov9
/yolov10
/yolo11
/yolo12
/rtdetr
/sam
/samv2
/mobilesam
/fastsam
. (e.g.yolov8-test.pt
) - If it is a
pt
file of segmentation mode, please name it includingyolov5n-seg
/yolov8s-seg
. (e.g.yolov8n-seg-test.pt
) - If it is a
pt
file of pose estimation mode, please name it includingyolov8n-pose
. (e.g.yolov8n-pose-test.pt
) - If it is a
pt
file of oriented bounding box mode, please name it includingyolov8n-obb
. (e.g.yolov8n-obb-test.pt
)
- After startup, the program will automatically loading the last configure parameters.
- After closedown, the program will save the changed configure parameters.
If you need Save results, please click Save Mode
before detection. Then you can save your detection results in selected path.
From YoloView v3.5,our work supports both Object Detection , Instance Segmentation, Pose Estimation and Oriented Bounding Box. Meanwhile, it also supports task switching between different versions,such as switching from YOLOv5
Object Detection task to YOLOv8
Instance Segmentation task.
7. Support Model Comparison among Object Detection, Instance Segmentation, Pose Estimation and Oriented Bounding Box
From YoloView v3.5,our work supports compare model performance among Object Detection, Instance Segmentation, Pose Estimation and Oriented Bounding Box.
OS : Windows 11
CPU : Intel(R) Core(TM) i7-10750H CPU @2.60GHz 2.59 GHz
GPU : NVIDIA GeForce GTX 1660Ti 6GB
create a virtual environment equipped with python version 3.11, then activate environment.
conda create -n yoloshow python>=3.11
conda activate yoloshow
Windows: pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Linux: pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Change other pytorch version in
Switch the path to the location of the program
cd {the location of the program}
Install dependency package of program
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
ultralytics root download
Run library_update.bat
If the resource has changed, you must run the command below.
pyside6-rcc {YOLOSHOW_New_Path}\ui\YOLOSHOWUI.qrc -o {YOLOSHOW_New_Path}\ui\YOLOSHOWUI_rc.py
Copy all font files *.ttf
in fonts
folder into C:\Windows\Fonts
mkdir -p ~/.local/share/fonts
sudo cp fonts/Shojumaru-Regular.ttf ~/.local/share/fonts/
sudo fc-cache -fv
The MacBook is so expensive that I cannot afford it, please install .ttf
by yourself. 😂
python main.py
ultralytics/ultralytics#1158 ultralytics/ultralytics#8772
pyinstaller --onefile --windowed --icon="images/jellybomb.ico" ^
--collect-data=pyiqa ^
--add-data="ultralytics/cfg/default.yaml;ultralytics/cfg" ^
--add-data="ultralytics/cfg/solutions/default.yaml;ultralytics/cfg/solutions" ^
--add-data="ui/YOLOSHOWUI_rc.py;ui" ^
--add-data="fonts;fonts" ^
--add-data="images;images" ^
--add-data="images/newsize;images/newsize" ^
--add-data="models;models" ^
--add-data="ui;ui" ^
--add-data="utils;utils" ^
--add-data="yolocode;yolocode" ^
--add-data="yoloshow;yoloshow" ^
main.py
Next, once built, a main.exe will be created in the dist folder. Go to the top and copy the 'config', 'ptfiles' 'images' folders and paste them under the dist folder.
└─dist (Parent Folder)
├─ config (folder)
├─ ptfiles (folder)
├─ images (folder)
└─ main.exe
Enjoy YOLO!!