|
| 1 | +// |
| 2 | +// Copyright (c) 2015-2025 CNRS INRIA |
| 3 | +// Copyright (c) 2016 Wandercraft, 86 rue de Paris 91400 Orsay, France. |
| 4 | +// |
| 5 | + |
| 6 | +#ifndef __pinocchio_spatial_se3_base_def_hxx__ |
| 7 | +#define __pinocchio_spatial_se3_base_def_hxx__ |
| 8 | + |
| 9 | +#ifdef PINOCCHIO_LSP |
| 10 | + #include "pinocchio/spatial/se3-base.hpp" |
| 11 | +#endif |
| 12 | + |
| 13 | +namespace pinocchio |
| 14 | +{ |
| 15 | + /** \brief Base class for rigid transformation. |
| 16 | + * |
| 17 | + * The rigid transform aMb can be seen in two ways: |
| 18 | + * |
| 19 | + * - given a point p expressed in frame B by its coordinate vector \f$ ^bp \f$, \f$ ^aM_b \f$ |
| 20 | + * computes its coordinates in frame A by \f$ ^ap = {}^aM_b {}^bp \f$. |
| 21 | + * - \f$ ^aM_b \f$ displaces a solid S centered at frame A into the solid centered in |
| 22 | + * B. In particular, the origin of A is displaced at the origin of B: |
| 23 | + * \f$^aM_b {}^aA = {}^aB \f$. |
| 24 | +
|
| 25 | + * The rigid displacement is stored as a rotation matrix and translation vector by: |
| 26 | + * \f$ ^aM_b x = {}^aR_b x + {}^aAB \f$ |
| 27 | + * where \f$^aAB\f$ is the vector from origin A to origin B expressed in coordinates A. |
| 28 | + * |
| 29 | + * \cheatsheet \f$ {}^aM_c = {}^aM_b {}^bM_c \f$ |
| 30 | + * |
| 31 | + * \ingroup pinocchio_spatial |
| 32 | + */ |
| 33 | + template<class Derived> |
| 34 | + struct SE3Base : NumericalBase<Derived> |
| 35 | + { |
| 36 | + PINOCCHIO_SE3_TYPEDEF_TPL(Derived); |
| 37 | + |
| 38 | + Derived & derived() |
| 39 | + { |
| 40 | + return *static_cast<Derived *>(this); |
| 41 | + } |
| 42 | + const Derived & derived() const |
| 43 | + { |
| 44 | + return *static_cast<const Derived *>(this); |
| 45 | + } |
| 46 | + |
| 47 | + Derived & const_cast_derived() const |
| 48 | + { |
| 49 | + return *const_cast<Derived *>(&derived()); |
| 50 | + } |
| 51 | + |
| 52 | + ConstAngularRef rotation() const |
| 53 | + { |
| 54 | + return derived().rotation_impl(); |
| 55 | + } |
| 56 | + ConstLinearRef translation() const |
| 57 | + { |
| 58 | + return derived().translation_impl(); |
| 59 | + } |
| 60 | + AngularRef rotation() |
| 61 | + { |
| 62 | + return derived().rotation_impl(); |
| 63 | + } |
| 64 | + LinearRef translation() |
| 65 | + { |
| 66 | + return derived().translation_impl(); |
| 67 | + } |
| 68 | + void rotation(const AngularType & R) |
| 69 | + { |
| 70 | + derived().rotation_impl(R); |
| 71 | + } |
| 72 | + void translation(const LinearType & t) |
| 73 | + { |
| 74 | + derived().translation_impl(t); |
| 75 | + } |
| 76 | + |
| 77 | + HomogeneousMatrixType toHomogeneousMatrix() const |
| 78 | + { |
| 79 | + return derived().toHomogeneousMatrix_impl(); |
| 80 | + } |
| 81 | + operator HomogeneousMatrixType() const |
| 82 | + { |
| 83 | + return toHomogeneousMatrix(); |
| 84 | + } |
| 85 | + |
| 86 | + /** |
| 87 | + * @brief The action matrix \f$ {}^aX_b \f$ of \f$ {}^aM_b \f$. |
| 88 | + * |
| 89 | + * With \f$ {}^aM_b = \left( \begin{array}{cc} R & t \\ 0 & 1 \\ \end{array} \right) \f$, |
| 90 | + * \f[ |
| 91 | + * {}^aX_b = \left( \begin{array}{cc} R & \hat{t} R \\ 0 & R \\ \end{array} \right) |
| 92 | + * \f] |
| 93 | + * |
| 94 | + * \cheatsheet \f$ {}^a\nu_c = {}^aX_b {}^b\nu_c \f$ |
| 95 | + */ |
| 96 | + ActionMatrixType toActionMatrix() const |
| 97 | + { |
| 98 | + return derived().toActionMatrix_impl(); |
| 99 | + } |
| 100 | + operator ActionMatrixType() const |
| 101 | + { |
| 102 | + return toActionMatrix(); |
| 103 | + } |
| 104 | + |
| 105 | + template<typename Matrix6Like> |
| 106 | + void toActionMatrix(const Eigen::MatrixBase<Matrix6Like> & action_matrix) const |
| 107 | + { |
| 108 | + derived().toActionMatrix_impl(action_matrix); |
| 109 | + } |
| 110 | + |
| 111 | + /** |
| 112 | + * @brief The action matrix \f$ {}^bX_a \f$ of \f$ {}^aM_b \f$. |
| 113 | + * \sa toActionMatrix() |
| 114 | + */ |
| 115 | + ActionMatrixType toActionMatrixInverse() const |
| 116 | + { |
| 117 | + return derived().toActionMatrixInverse_impl(); |
| 118 | + } |
| 119 | + |
| 120 | + template<typename Matrix6Like> |
| 121 | + void toActionMatrixInverse(const Eigen::MatrixBase<Matrix6Like> & action_matrix_inverse) const |
| 122 | + { |
| 123 | + derived().toActionMatrixInverse_impl(action_matrix_inverse.const_cast_derived()); |
| 124 | + } |
| 125 | + |
| 126 | + ActionMatrixType toDualActionMatrix() const |
| 127 | + { |
| 128 | + return derived().toDualActionMatrix_impl(); |
| 129 | + } |
| 130 | + |
| 131 | + void disp(std::ostream & os) const |
| 132 | + { |
| 133 | + static_cast<const Derived *>(this)->disp_impl(os); |
| 134 | + } |
| 135 | + |
| 136 | + template<typename Matrix6Like> |
| 137 | + void toDualActionMatrix(const Eigen::MatrixBase<Matrix6Like> & dual_action_matrix) const |
| 138 | + { |
| 139 | + derived().toDualActionMatrix_impl(dual_action_matrix); |
| 140 | + } |
| 141 | + |
| 142 | + typename SE3GroupAction<Derived>::ReturnType operator*(const Derived & m2) const |
| 143 | + { |
| 144 | + return derived().__mult__(m2); |
| 145 | + } |
| 146 | + |
| 147 | + /// ay = aXb.act(by) |
| 148 | + template<typename D> |
| 149 | + typename SE3GroupAction<D>::ReturnType act(const D & d) const |
| 150 | + { |
| 151 | + return derived().act_impl(d); |
| 152 | + } |
| 153 | + |
| 154 | + /// by = aXb.actInv(ay) |
| 155 | + template<typename D> |
| 156 | + typename SE3GroupAction<D>::ReturnType actInv(const D & d) const |
| 157 | + { |
| 158 | + return derived().actInv_impl(d); |
| 159 | + } |
| 160 | + |
| 161 | + bool operator==(const Derived & other) const |
| 162 | + { |
| 163 | + return derived().isEqual(other); |
| 164 | + } |
| 165 | + |
| 166 | + bool operator!=(const Derived & other) const |
| 167 | + { |
| 168 | + return !(*this == other); |
| 169 | + } |
| 170 | + |
| 171 | + bool isApprox( |
| 172 | + const Derived & other, |
| 173 | + const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const |
| 174 | + { |
| 175 | + return derived().isApprox_impl(other, prec); |
| 176 | + } |
| 177 | + |
| 178 | + friend std::ostream & operator<<(std::ostream & os, const SE3Base<Derived> & X) |
| 179 | + { |
| 180 | + X.disp(os); |
| 181 | + return os; |
| 182 | + } |
| 183 | + |
| 184 | + /// |
| 185 | + /// \returns true if *this is approximately equal to the identity placement, within the |
| 186 | + /// precision given by prec. |
| 187 | + /// |
| 188 | + bool isIdentity( |
| 189 | + const typename traits<Derived>::Scalar & prec = |
| 190 | + Eigen::NumTraits<typename traits<Derived>::Scalar>::dummy_precision()) const |
| 191 | + { |
| 192 | + return derived().isIdentity(prec); |
| 193 | + } |
| 194 | + |
| 195 | + /// |
| 196 | + /// \returns true if the rotational part of *this is a rotation matrix (normalized columns), |
| 197 | + /// within the precision given by prec. |
| 198 | + /// |
| 199 | + bool isNormalized(const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const |
| 200 | + { |
| 201 | + return derived().isNormalized(prec); |
| 202 | + } |
| 203 | + |
| 204 | + /// |
| 205 | + /// \brief Normalize *this in such a way the rotation part of *this lies on SO(3). |
| 206 | + /// |
| 207 | + void normalize() |
| 208 | + { |
| 209 | + derived().normalize(); |
| 210 | + } |
| 211 | + |
| 212 | + /// |
| 213 | + /// \returns a Normalized version of *this, in such a way the rotation part of the returned |
| 214 | + /// transformation lies on SO(3). |
| 215 | + /// |
| 216 | + PlainType normalized() const |
| 217 | + { |
| 218 | + derived().normalized(); |
| 219 | + } |
| 220 | + |
| 221 | + }; // struct SE3Base |
| 222 | + |
| 223 | +} // namespace pinocchio |
| 224 | + |
| 225 | +#endif // ifndef __pinocchio_spatial_se3_base_def_hxx__ |
0 commit comments