|
57 | 57 | const = taskCOM.compute(t, q, v, data) |
58 | 58 |
|
59 | 59 | Jpinv = np.linalg.pinv(const.matrix, 1e-5) |
60 | | - dv = Jpinv * const.vector |
| 60 | + dv = Jpinv.dot(const.vector) |
61 | 61 |
|
62 | | - assert np.linalg.norm(Jpinv * const.matrix, 2) - 1.0 < tol |
| 62 | + assert np.linalg.norm(Jpinv.dot(const.matrix), 2) - 1.0 < tol |
63 | 63 | v += dt * dv |
64 | 64 | q = pin.integrate(model, q, dt * v) |
65 | 65 | t += dt |
|
113 | 113 | const = task_joint.compute(t, q, v, data) |
114 | 114 |
|
115 | 115 | Jpinv = np.linalg.pinv(const.matrix, 1e-5) |
116 | | - dv = Jpinv * const.vector |
| 116 | + dv = Jpinv.dot(const.vector) |
117 | 117 |
|
118 | | - assert np.linalg.norm(Jpinv * const.matrix, 2) - 1.0 < tol |
| 118 | + assert np.linalg.norm(Jpinv.dot(const.matrix), 2) - 1.0 < tol |
119 | 119 | v += dt * dv |
120 | 120 | q = pin.integrate(model, q, dt * v) |
121 | 121 | t += dt |
|
171 | 171 | const = task_se3.compute(t, q, v, data) |
172 | 172 |
|
173 | 173 | Jpinv = np.linalg.pinv(const.matrix, 1e-5) |
174 | | - dv = Jpinv * const.vector |
| 174 | + dv = Jpinv.dot(const.vector) |
175 | 175 |
|
176 | | - assert np.linalg.norm(Jpinv * const.matrix, 2) - 1.0 < tol |
| 176 | + assert np.linalg.norm(Jpinv.dot(const.matrix), 2) - 1.0 < tol |
177 | 177 |
|
178 | 178 | v += dt * dv |
179 | 179 | q = pin.integrate(model, q, dt * v) |
|
252 | 252 | robot.computeAllTerms(data_next, q_next, v) |
253 | 253 | J_am = data.Ag |
254 | 254 | J_am_next = data_next.Ag |
255 | | - drift = (J_am_next[-3:, :] - J_am[-3:, :]) * v / dt |
| 255 | + drift = (J_am_next[-3:, :] - J_am[-3:, :]).dot(v) / dt |
256 | 256 | drift_pin = pin.computeCentroidalMomentumTimeVariation(model, data).angular |
257 | 257 | diff_drift = norm(drift_pin - drift) |
258 | 258 | print("Difference between drift computations: ", diff_drift) |
259 | 259 |
|
260 | 260 | Jpinv = np.linalg.pinv(const.matrix, 1e-5) |
261 | | - dv = Jpinv * const.vector |
| 261 | + dv = Jpinv.dot(const.vector) |
262 | 262 |
|
263 | | - assert np.linalg.norm(Jpinv * const.matrix, 2) - 1.0 < tol |
| 263 | + assert np.linalg.norm(Jpinv.dot(const.matrix), 2) - 1.0 < tol |
264 | 264 | v += dt * dv |
265 | 265 | q = pin.integrate(model, q, dt * v) |
266 | 266 | t += dt |
|
321 | 321 | const = task_joint.compute(t, q, v, data) |
322 | 322 |
|
323 | 323 | Jpinv = np.linalg.pinv(const.matrix, 1e-5) |
324 | | - dv = Jpinv * const.vector |
| 324 | + dv = Jpinv.dot(const.vector) |
325 | 325 |
|
326 | | - assert np.linalg.norm(Jpinv * const.matrix, 2) - 1.0 < tol |
| 326 | + assert np.linalg.norm(Jpinv.dot(const.matrix), 2) - 1.0 < tol |
327 | 327 | v += dt * dv |
328 | 328 | q = pin.integrate(model, q, dt * v) |
329 | 329 | t += dt |
|
0 commit comments