@@ -14,17 +14,18 @@ cat(' * <a href="digamma-appendix.html">Digamma</a>\n')
1414
1515## Beta {#beta-appendix}
1616
17- The beta function, $\text{B}(\alpha,\beta )$, computes the normalizing
17+ The beta function, $\text{B}(a, b )$, computes the normalizing
1818constant for the beta distribution, and is defined for $a > 0$ and $b
1919> 0$ by \[ \text{B}(a,b) \ = \ \int_0^1 u^{a - 1} (1 - u)^{b - 1} \,
20- du \ = \ \frac{\Gamma(a) \, \Gamma(b)}{\Gamma(a+b)} \, . \]
20+ du \ = \ \frac{\Gamma(a) \, \Gamma(b)}{\Gamma(a+b)} \, , \]
21+ where $\Gamma(x)$ is the [ Gamma function] ( #gamma-appendix ) .
2122
2223## Incomplete Beta {#inc-beta-appendix}
2324
2425The incomplete beta function, $\text{B}(x; a, b)$, is defined for $x
2526\in [ 0, 1] $ and $a, b \geq 0$ such that $a + b \neq 0$ by \[
26- \text{B}(x; \, a, b) \ = \ \int_0^x u^{a - 1} \, (1 - u)^{b - 1} \,
27- du, `< \] where $\text{B}(a, b)$ is the beta function defined in
27+ \text{B}(x; \, a, b) \ = \ \int_0^x u^{a - 1} \, (1 - u)^{b - 1} \,
28+ du, \] where $\text{B}(a, b)$ is the beta function defined in
2829[ appendix] ( #beta-appendix ) . If $x = 1$, the incomplete beta function
2930reduces to the beta function, $\text{B}(1; a, b) = \text{B}(a, b)$.
3031
@@ -38,7 +39,7 @@ The gamma function, $\Gamma(x)$, is the generalization of the
3839factorial function to continuous variables, defined so that for
3940positive integers $n$, \[ \Gamma(n+1) = n! \] Generalizing to all
4041positive numbers and non-integer negative numbers, \[ \Gamma(x) =
41- \int_0^{\infty} u^{x - 1} \exp(-u) \, n du. \]
42+ \int_0^{\infty} u^{x - 1} \exp(-u) \, du. \]
4243
4344## Digamma {#digamma-appendix}
4445
0 commit comments