@@ -340,10 +340,10 @@ $30 \log 2$. For a description of argument and return types, see section
340340## Poisson-Log Generalised Linear Model (Poisson Regression) {#poisson-log-glm}
341341
342342Stan also supplies a single primitive for a Generalised Linear Model
343- with poisson likelihood and log link function, i.e. a primitive for a
344- poisson regression. This should provide a more efficient
345- implementation of poisson regression than a manually written
346- regression in terms of a poisson likelihood and matrix multiplication.
343+ with Poisson likelihood and log link function, i.e. a primitive for a
344+ Poisson regression. This should provide a more efficient
345+ implementation of Poisson regression than a manually written
346+ regression in terms of a Poisson likelihood and matrix multiplication.
347347
348348### Probability Mass Function
349349
@@ -367,7 +367,7 @@ dropping constant additive terms.
367367\index{{\tt \bfseries poisson\_ log\_ glm\_ lpmf }!{\tt (int[ ] y \textbar\ matrix x, real alpha, vector beta): real}|hyperpage}
368368
369369` real ` ** ` poisson_log_glm_lpmf ` ** ` (int[] y | matrix x, real alpha, vector beta) ` <br >\newline
370- The log poisson probability mass of y given log-rate ` alpha+x*beta ` ,
370+ The log Poisson probability mass of y given log-rate ` alpha+x*beta ` ,
371371where a constant intercept ` alpha ` is used for all observations. The
372372number of rows of the independent variable matrix ` x ` needs to match
373373the length of the dependent variable vector ` y ` and the number of
@@ -377,7 +377,7 @@ columns of `x` needs to match the length of the weight vector `beta`.
377377\index{{\tt \bfseries poisson\_ log\_ glm\_ lpmf }!{\tt (int[ ] y \textbar\ matrix x, vector alpha, vector beta): real}|hyperpage}
378378
379379` real ` ** ` poisson_log_glm_lpmf ` ** ` (int[] y | matrix x, vector alpha, vector beta) ` <br >\newline
380- The log poisson probability mass of y given log-rate ` alpha+x*beta ` ,
380+ The log Poisson probability mass of y given log-rate ` alpha+x*beta ` ,
381381where an intercept ` alpha ` is used that is allowed to vary with the
382382different observations. The number of rows of the independent variable
383383matrix ` x ` needs to match the length of the dependent variable vector
0 commit comments