About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Wald distribution probability density function (PDF).
The probability density function (PDF) for a Wald random variable is
where µ > 0 is the mean and λ > 0 is the shape parameter.
npm install @stdlib/stats-base-dists-wald-pdfAlternatively,
- To load the package in a website via a
scripttag without installation and bundlers, use the ES Module available on theesmbranch (see README). - If you are using Deno, visit the
denobranch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umdbranch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var pdf = require( '@stdlib/stats-base-dists-wald-pdf' );Evaluates the probability density function (PDF) for a Wald distribution with parameters mu (mean) and lambda (shape parameter).
var y = pdf( 2.0, 1.0, 1.0 );
// returns ~0.110
y = pdf( 0.5, 2.0, 3.0 );
// returns ~0.362If provided NaN as any argument, the function returns NaN.
var y = pdf( NaN, 1.0, 1.0 );
// returns NaN
y = pdf( 1.0, NaN, 1.0 );
// returns NaN
y = pdf( 1.0, 1.0, NaN );
// returns NaNIf provided mu <= 0, the function returns NaN.
var y = pdf( 2.0, 0.0, 1.0 );
// returns NaN
y = pdf( 2.0, -1.0, 1.0 );
// returns NaNIf provided lambda < 0, the function returns NaN.
var y = pdf( 2.0, 1.0, -1.0 );
// returns NaNIf provided lambda = 0, the function evaluates the PDF of a degenerate distribution centered at mu.
var y = pdf( 2.0, 1.0, 0.0 );
// returns 0.0
y = pdf( 1.0, 1.0, 0.0 );
// returns InfinityIf provided x <= 0, the function returns 0.0.
var y = pdf( 0.0, 1.0, 1.0 );
// returns 0.0
y = pdf( -1.0, 1.0, 1.0 );
// returns 0.0Partially applies mu and lambda to create a reusable function for evaluating the PDF.
var mypdf = pdf.factory( 1.0, 1.0 );
var y = mypdf( 2.0 );
// returns ~0.110
y = mypdf( 0.5 );
// returns ~0.879var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var EPS = require( '@stdlib/constants-float64-eps' );
var pdf = require( '@stdlib/stats-base-dists-wald-pdf' );
var opts = {
'dtype': 'float64'
};
var x = uniform( 10, EPS, 10.0, opts );
var mu = uniform( 10, EPS, 10.0, opts );
var lambda = uniform( 10, EPS, 20.0, opts );
logEachMap( 'x: %0.4f, µ: %0.4f, λ: %0.4f, f(x;µ,λ): %0.4f', x, mu, lambda, pdf );#include "stdlib/stats/base/dists/wald/pdf.h"Evaluates the probability density function (PDF) for a Wald distribution with parameters mu (mean) and lambda (shape parameter).
double y = stdlib_base_dists_wald_pdf( 2.0, 1.0, 1.0 );
// returns ~0.110The function accepts the following arguments:
- x:
[in] doubleinput value. - mu:
[in] doublemean. - lambda:
[in] doubleshape parameter.
double stdlib_base_dists_wald_pdf( const double x, const double mu, const double lambda );#include "stdlib/stats/base/dists/wald/pdf.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double lambda;
double mu;
double x;
double y;
int i;
for ( i = 0; i < 10; i++ ) {
x = random_uniform( 0.0, 10.0 );
mu = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 10.0 );
lambda = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 20.0 );
y = stdlib_base_dists_wald_pdf( x, mu, lambda );
printf( "x: %lf, µ: %lf, λ: %lf, f(x;µ,λ): %lf\n", x, mu, lambda, y );
}
}This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2026. The Stdlib Authors.