Skip to content
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 151 additions & 0 deletions lib/node_modules/@stdlib/ndarray/map/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
<!--

@license Apache-2.0

Copyright (c) 2024 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# map

> Apply a callback function to elements in an input ndarray and assign results to elements in an output ndarray.

<section class="intro">

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var map = require( '@stdlib/ndarray/map' );
```

#### map( x, \[options, ]fcn\[, thisArg] )

Applies a callback function to elements in an input ndarray and assigns results to elements in an output ndarray.

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var ndarray = require( '@stdlib/ndarray/ctor' );

function scale( x ) {
return x * 10.0;
}

// Create the input data buffer:
var buffer = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );

// Define the shape of the input ndarray:
var shape = [ 3, 2 ];

// Define the array strides:
var strides = [ 2, 1 ];

// Define the index offset:
var offset = 0;

// Create the input ndarray:
var x = ndarray( 'float64', buffer, shape, strides, offset, 'row-major' );

// Apply the map function:
var y = map( x, scale );

console.log( y.data );
// => <Float64Array>[ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0 ]
```

The function accepts the following arguments:

- **x**: input ndarray.
- **options**: function options.
- **fcn**: callback to apply.
- **thisArg**: callback execution context.

The function accepts the following options:

- **dtype**: output ndarray data type. Defaults to match the input ndarray if not specified.

The callback function is provided the following arguments:

- **values**: current array element.
- **indices**: current array element indices.
- **arr**: the input ndarray.

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before applying a callback function in order to achieve better performance.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var abs = require( '@stdlib/math/base/special/abs' );
var ndarray2array = require( '@stdlib/ndarray/base/to-array' );
var naryFunction = require( '@stdlib/utils/nary-function' );
var ndarray = require( '@stdlib/ndarray/ctor' );
var map = require( '@stdlib/ndarray/map' );

var buffer = discreteUniform( 10, -100, 100, {
'dtype': 'generic'
});
var shape = [ 5, 2 ];
var strides = [ 2, 1 ];
var offset = 0;
var x = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' );

var y = map( x, naryFunction( abs, 1 ) );
console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) );
console.log( ndarray2array( y.data, y.shape, y.strides, y.offset, y.order ) );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<section class="links">

<!-- <related-links> -->

<!-- </related-links> -->

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var identity = require( '@stdlib/math/base/special/identity' );
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var shape2strides = require( '@stdlib/ndarray/base/shape2strides' );
var ndarray = require( '@stdlib/ndarray/ctor' );
var pkg = require( './../package.json' ).name;
var map = require( './../lib' );


// VARIABLES //

var xtypes = [ 'generic' ];
var ytypes = [ 'float64' ];
var order = 'column-major';


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - array length
* @param {NonNegativeIntegerArray} shape - ndarray shape
* @param {string} xtype - input ndarray data type
* @param {string} ytype - output ndarray data type
* @returns {Function} benchmark function
*/
function createBenchmark( len, shape, xtype, ytype ) {
var strides;
var opts;
var xbuf;
var x;

xbuf = discreteUniform( len, -100, 100, {
'dtype': xtype
});
strides = shape2strides( shape, order );
x = ndarray( xtype, xbuf, shape, strides, 0, order );
opts = {
'dtype': ytype
};

return benchmark;

/**
* Benchmark function.
*
* @private
* @param {Benchmark} b - benchmark instance
*/
function benchmark( b ) {
var y;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
y = map( x, opts, identity );
if ( isnan( y.data[ i%len ] ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( !isndarrayLike( y ) ) {
b.fail( 'should return an ndarray' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var len;
var min;
var max;
var sh;
var t1;
var t2;
var f;
var i;
var j;

min = 1; // 10^min
max = 6; // 10^max

for ( j = 0; j < xtypes.length; j++ ) {
t1 = xtypes[ j ];
t2 = ytypes[ j ];
for ( i = min; i <= max; i++ ) {
len = pow( 10, i );

sh = [ len ];
f = createBenchmark( len, sh, t1, t2 );
bench( pkg+':ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+order+',yorder='+order+',xtype='+t1+',ytype='+t2, f );
}
}
}

main();
Loading
Loading