Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lib/node_modules/@stdlib/blas/ext/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ var ns = extblas;
- <span class="signature">[`snansum( N, x, stride )`][@stdlib/blas/ext/base/snansum]</span><span class="delimiter">: </span><span class="description">calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values.</span>
- <span class="signature">[`snansumkbn( N, x, stride )`][@stdlib/blas/ext/base/snansumkbn]</span><span class="delimiter">: </span><span class="description">calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.</span>
- <span class="signature">[`snansumkbn2( N, x, stride )`][@stdlib/blas/ext/base/snansumkbn2]</span><span class="delimiter">: </span><span class="description">calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm.</span>
- <span class="signature">[`snansumors( N, x, stride )`][@stdlib/blas/ext/base/snansumors]</span><span class="delimiter">: </span><span class="description">calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.</span>
- <span class="signature">[`snansumors( N, x, strideX )`][@stdlib/blas/ext/base/snansumors]</span><span class="delimiter">: </span><span class="description">calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.</span>
- <span class="signature">[`snansumpw( N, x, strideX )`][@stdlib/blas/ext/base/snansumpw]</span><span class="delimiter">: </span><span class="description">calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.</span>
- <span class="signature">[`srev( N, x, stride )`][@stdlib/blas/ext/base/srev]</span><span class="delimiter">: </span><span class="description">reverse a single-precision floating-point strided array in-place.</span>
- <span class="signature">[`ssort2hp( N, order, x, strideX, y, strideY )`][@stdlib/blas/ext/base/ssort2hp]</span><span class="delimiter">: </span><span class="description">simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using heapsort.</span>
Expand Down
6 changes: 3 additions & 3 deletions lib/node_modules/@stdlib/stats/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dmediansorted( N, x, stride )`][@stdlib/stats/base/dmediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted double-precision floating-point strided array.</span>
- <span class="signature">[`dmidrange( N, x, stride )`][@stdlib/stats/base/dmidrange]</span><span class="delimiter">: </span><span class="description">calculate the mid-range of a double-precision floating-point strided array.</span>
- <span class="signature">[`dmin( N, x, stride )`][@stdlib/stats/base/dmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array.</span>
- <span class="signature">[`dminabs( N, x, stride )`][@stdlib/stats/base/dminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array.</span>
- <span class="signature">[`dminabs( N, x, strideX )`][@stdlib/stats/base/dminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array.</span>
- <span class="signature">[`dminsorted( N, x, stride )`][@stdlib/stats/base/dminsorted]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a sorted double-precision floating-point strided array.</span>
- <span class="signature">[`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array according to a mask.</span>
- <span class="signature">[`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask.</span>
Expand All @@ -98,7 +98,7 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dnanmeanpw( N, x, stride )`][@stdlib/stats/base/dnanmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.</span>
- <span class="signature">[`dnanmeanwd( N, x, stride )`][@stdlib/stats/base/dnanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.</span>
- <span class="signature">[`dnanmin( N, x, stride )`][@stdlib/stats/base/dnanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`dnanminabs( N, x, stride )`][@stdlib/stats/base/dnanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`dnanminabs( N, x, strideX )`][@stdlib/stats/base/dnanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
- <span class="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
- <span class="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
Expand All @@ -115,7 +115,7 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dnanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
- <span class="signature">[`dnanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
- <span class="signature">[`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`drange( N, x, stride )`][@stdlib/stats/base/drange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array.</span>
- <span class="signature">[`drange( N, x, strideX )`][@stdlib/stats/base/drange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array.</span>
- <span class="signature">[`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
- <span class="signature">[`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
Expand Down
Loading