Skip to content
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
144 changes: 115 additions & 29 deletions lib/node_modules/@stdlib/stats/base/dsmeanwd/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,36 +51,33 @@ The [arithmetic mean][arithmetic-mean] is defined as
var dsmeanwd = require( '@stdlib/stats/base/dsmeanwd' );
```

#### dsmeanwd( N, x, stride )
#### dsmeanwd( N, x, strideX )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array `x` using Welford's algorithm with extended accumulation and returning an extended precision result.

```javascript
var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dsmeanwd( N, x, 1 );
var v = dsmeanwd( x.length, x, 1 );
// returns ~0.3333
```

The function has the following parameters:

- **N**: number of indexed elements.
- **x**: input [`Float32Array`][@stdlib/array/float32].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
The `N` and stride parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );

var v = dsmeanwd( N, x, 2 );
var v = dsmeanwd( 4, x, 2 );
// returns 1.25
```

Expand All @@ -90,28 +87,24 @@ Note that indexing is relative to the first index. To introduce an offset, use [

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dsmeanwd( N, x1, 2 );
var v = dsmeanwd( 4, x1, 2 );
// returns 1.25
```

#### dsmeanwd.ndarray( N, x, stride, offset )
#### dsmeanwd.ndarray( N, x, strideX, offsetX )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and alternative indexing semantics and returning an extended precision result.

```javascript
var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dsmeanwd.ndarray( N, x, 1, 0 );
var v = dsmeanwd.ndarray( x.length, x, 1, 0 );
// returns ~0.33333
```

Expand All @@ -123,12 +116,10 @@ While [`typed array`][mdn-typed-array] views mandate a view offset based on the

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = dsmeanwd.ndarray( N, x, 2, 1 );
var v = dsmeanwd.ndarray( 4, x, 2, 1 );
// returns 1.25
```

Expand All @@ -141,7 +132,7 @@ var v = dsmeanwd.ndarray( N, x, 2, 1 );
## Notes

- If `N <= 0`, both functions return `NaN`.
- Accumulated intermediate values are stored as double-precision floating-point numbers.
- Accumulated intermediate values are stored as double-precision floating-point numbers.

</section>

Expand All @@ -154,18 +145,12 @@ var v = dsmeanwd.ndarray( N, x, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dsmeanwd = require( '@stdlib/stats/base/dsmeanwd' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float32'
});
console.log( x );

var v = dsmeanwd( x.length, x, 1 );
Expand All @@ -176,6 +161,107 @@ console.log( v );

<!-- /.examples -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/dsmeanwd.h"
```

#### stdlib_strided_dsmeanwd( N, \*X, strideX )

Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.

```c
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };

double v = stdlib_strided_dsmeanwd( 4, x, 2 );
// returns 4.0
```
The function accepts the following arguments:
- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] float*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
```c
double stdlib_strided_dsmeanwd( const CBLAS_INT N, const float *X, const CBLAS_INT strideX );
```

#### stdlib_strided_dsmeanwd_ndarray( N, \*X, strideX, offsetX )

Computes the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and alternative indexing semantics and returning an extended precision result.

```c
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };

double v = stdlib_strided_dsmeanwd_ndarray( 4, x, 2, 0 );
// returns 4.0
```
The function accepts the following arguments:
- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] float*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.
```c
double stdlib_strided_dsmeanwd_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/dsmeanwd.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };

// Specify the number of elements:
const int N = 4;

// Specify the stride length:
const int strideX = 2;

// Compute the arithmetic mean:
double v = stdlib_strided_dsmeanwd( N, x, strideX );

// Print the result:
printf( "mean: %lf\n", v );
}
```
</section>
<!-- /.examples -->
</section>
<!-- /.c -->
* * *
<section class="references">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,20 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var pkg = require( './../package.json' ).name;
var dsmeanwd = require( './../lib/dsmeanwd.js' );


// VARIABLES //

var options = {
'dtype': 'float32'
};


// FUNCTIONS //

/**
Expand All @@ -39,13 +45,7 @@ var dsmeanwd = require( './../lib/dsmeanwd.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,9 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var tryRequire = require( '@stdlib/utils/try-require' );
var pkg = require( './../package.json' ).name;

Expand All @@ -36,6 +35,9 @@ var dsmeanwd = tryRequire( resolve( __dirname, './../lib/dsmeanwd.native.js' ) )
var opts = {
'skip': ( dsmeanwd instanceof Error )
};
var options = {
'dtype': 'float32'
};


// FUNCTIONS //
Expand All @@ -48,13 +50,7 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,20 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var pkg = require( './../package.json' ).name;
var dsmeanwd = require( './../lib/ndarray.js' );


// VARIABLES //

var options = {
'dtype': 'float32'
};


// FUNCTIONS //

/**
Expand All @@ -39,13 +45,7 @@ var dsmeanwd = require( './../lib/ndarray.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,9 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var tryRequire = require( '@stdlib/utils/try-require' );
var pkg = require( './../package.json' ).name;

Expand All @@ -36,6 +35,9 @@ var dsmeanwd = tryRequire( resolve( __dirname, './../lib/ndarray.native.js' ) );
var opts = {
'skip': ( dsmeanwd instanceof Error )
};
var options = {
'dtype': 'float32'
};


// FUNCTIONS //
Expand All @@ -48,13 +50,7 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Loading
Loading