Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 1 addition & 15 deletions lib/node_modules/@stdlib/math/base/ops/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,6 @@ The namespace contains the following functions:

<div class="namespace-toc">

- <span class="signature">[`cdiv( z1, z2 )`][@stdlib/complex/float64/base/div]</span><span class="delimiter">: </span><span class="description">divide two double-precision complex floating-point numbers.</span>
- <span class="signature">[`cneg( z )`][@stdlib/math/base/ops/cneg]</span><span class="delimiter">: </span><span class="description">negate a double-precision complex floating-point number.</span>
- <span class="signature">[`cnegf( z )`][@stdlib/math/base/ops/cnegf]</span><span class="delimiter">: </span><span class="description">negate a single-precision complex floating-point number.</span>
- <span class="signature">[`csub( z1, z2 )`][@stdlib/math/base/ops/csub]</span><span class="delimiter">: </span><span class="description">subtract two double-precision complex floating-point numbers.</span>
Expand All @@ -68,20 +67,9 @@ The namespace contains the following functions:
<!-- eslint no-undef: "error" -->

```javascript
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var ns = require( '@stdlib/math/base/ops' );

console.log( ns.sub( 1.25, 0.45 ) );
// => 0.8

console.log( ns.divf( 1.2, 0.4 ) );
// => 3.0

// Operations for complex numbers:
var z1 = new Complex128( 5.0, 3.0 );
var z2 = new Complex128( -2.0, 1.0 );
console.log( ns.cmul( z1, z2 ) ); // { 're': -13.0, 'im': -1.0 }
// => <Complex128>
console.log( ns );
```

</section>
Expand All @@ -102,8 +90,6 @@ console.log( ns.cmul( z1, z2 ) ); // { 're': -13.0, 'im': -1.0 }

<!-- <toc-links> -->

[@stdlib/complex/float64/base/div]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float64/base/div

[@stdlib/math/base/ops/cneg]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/cneg

[@stdlib/math/base/ops/cnegf]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/cnegf
Expand Down
8 changes: 4 additions & 4 deletions lib/node_modules/@stdlib/stats/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
- <span class="signature">[`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
- <span class="signature">[`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
- <span class="signature">[`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
- <span class="signature">[`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
Expand All @@ -104,13 +104,13 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dsmeanpn( N, x, strideX )`][@stdlib/stats/base/dsmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dsmeanpw( N, x, strideX )`][@stdlib/stats/base/dsmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dsmeanwd( N, x, strideX )`][@stdlib/stats/base/dsmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
- <span class="signature">[`dsnanmean( N, x, strideX )`][@stdlib/stats/base/dsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
- <span class="signature">[`dsnanmeanors( N, x, strideX )`][@stdlib/stats/base/dsnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.</span>
- <span class="signature">[`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/base/dsnanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.</span>
- <span class="signature">[`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dsnanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.</span>
- <span class="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
- <span class="signature">[`dstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`dstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/dstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
- <span class="signature">[`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
- <span class="signature">[`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
Expand Down Expand Up @@ -241,7 +241,7 @@ The namespace contains the following statistical functions:
- <span class="signature">[`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array.</span>
- <span class="signature">[`svariancech( N, correction, x, strideX )`][@stdlib/stats/base/svariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
- <span class="signature">[`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`svariancepn( N, correction, x, strideX )`][@stdlib/stats/base/svariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
- <span class="signature">[`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
- <span class="signature">[`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/svarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
Expand Down