Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions lib/node_modules/@stdlib/math/base/ops/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,6 @@ The namespace contains the following functions:

<div class="namespace-toc">

- <span class="signature">[`cnegf( z )`][@stdlib/complex/float32/base/neg]</span><span class="delimiter">: </span><span class="description">negate a single-precision complex floating-point number.</span>
- <span class="signature">[`csub( z1, z2 )`][@stdlib/math/base/ops/csub]</span><span class="delimiter">: </span><span class="description">subtract two double-precision complex floating-point numbers.</span>
- <span class="signature">[`csubf( z1, z2 )`][@stdlib/math/base/ops/csubf]</span><span class="delimiter">: </span><span class="description">subtract two single-precision complex floating-point numbers.</span>

Expand Down Expand Up @@ -89,8 +88,6 @@ console.log( ns );

<!-- <toc-links> -->

[@stdlib/complex/float32/base/neg]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float32/base/neg

[@stdlib/math/base/ops/csub]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/csub

[@stdlib/math/base/ops/csubf]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/csubf
Expand Down
12 changes: 6 additions & 6 deletions lib/node_modules/@stdlib/stats/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,12 +81,12 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
- <span class="signature">[`dnanrange( N, x, strideX )`][@stdlib/stats/base/dnanrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
- <span class="signature">[`dnanstdevch( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
- <span class="signature">[`dnanstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dnanstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass algorithm.</span>
- <span class="signature">[`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
- <span class="signature">[`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
- <span class="signature">[`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
- <span class="signature">[`dnanvariance( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
- <span class="signature">[`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
- <span class="signature">[`dnanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
Expand Down Expand Up @@ -115,7 +115,7 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
- <span class="signature">[`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dsvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dsvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dvariance( N, correction, x, strideX )`][@stdlib/stats/base/dvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array.</span>
- <span class="signature">[`dvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
Expand Down Expand Up @@ -206,8 +206,8 @@ The namespace contains the following statistical functions:
- <span class="signature">[`snanmaxabs( N, x, strideX )`][@stdlib/stats/base/snanmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`snanmeanors( N, x, strideX )`][@stdlib/stats/base/snanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
- <span class="signature">[`snanmeanpn( N, x, stride )`][@stdlib/stats/base/snanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
- <span class="signature">[`snanmeanwd( N, x, stride )`][@stdlib/stats/base/snanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.</span>
- <span class="signature">[`snanmeanpn( N, x, strideX )`][@stdlib/stats/base/snanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
- <span class="signature">[`snanmeanwd( N, x, strideX )`][@stdlib/stats/base/snanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.</span>
- <span class="signature">[`snanmin( N, x, strideX )`][@stdlib/stats/base/snanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`snanminabs( N, x, strideX )`][@stdlib/stats/base/snanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
- <span class="signature">[`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
Expand Down