Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 197 additions & 0 deletions lib/node_modules/@stdlib/stats/incr/nanapcorr/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
<!--

@license Apache-2.0

Copyright (c) 2018 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# incrnanapcorr

> Compute a sample absolute [Pearson product-moment correlation coefficient][pearson-correlation] incrementally.

<section class="intro">

The [Pearson product-moment correlation coefficient][pearson-correlation] between random variables `X` and `Y` is defined as

<!-- <equation class="equation" label="eq:pearson_correlation_coefficient" align="center" raw="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" alt="Equation for the Pearson product-moment correlation coefficient."> -->

```math
\rho_{X,Y} = \frac{\mathop{\mathrm{cov}}(X,Y)}{\sigma_X \sigma_Y}
```

<!-- <div class="equation" align="center" data-raw-text="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" data-equation="eq:pearson_correlation_coefficient">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@80f96253bf726f33bc71d8eb68037ab203ae4cf9/lib/node_modules/@stdlib/stats/incr/nanapcorr/docs/img/equation_pearson_correlation_coefficient.svg" alt="Equation for the Pearson product-moment correlation coefficient.">
<br>
</div> -->

<!-- </equation> -->

where the numerator is the [covariance][covariance] and the denominator is the product of the respective standard deviations.

For a sample of size `n`, the sample [Pearson product-moment correlation coefficient][pearson-correlation] is defined as

<!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->

```math
r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}
```

<!-- <div class="equation" align="center" data-raw-text="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@80f96253bf726f33bc71d8eb68037ab203ae4cf9/lib/node_modules/@stdlib/stats/incr/nanapcorr/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
<br>
</div> -->

<!-- </equation> -->

The sample **absolute** [Pearson product-moment correlation coefficient][pearson-correlation] is thus defined as the absolute value of the sample [Pearson product-moment correlation coefficient][pearson-correlation].

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var incrnanapcorr = require( '@stdlib/stats/incr/nanapcorr' );
```

#### incrnanapcorr( \[mx, my] )

Returns an accumulator `function` which incrementally computes a sample absolute [Pearson product-moment correlation coefficient][pearson-correlation].

```javascript
var accumulator = incrnanapcorr();
```

If the means are already known, provide `mx` and `my` arguments.

```javascript
var accumulator = incrnanapcorr( 3.0, -5.5 );
```

#### accumulator( \[x, y] )

If provided input value `x` and `y`, the accumulator function returns an updated accumulated value. If not provided input values `x` and `y`, the accumulator function returns the current accumulated value.

```javascript
var accumulator = incrnanapcorr();

var v = accumulator( 2.0, 1.0 );
// returns 0.0

var v = accumulator( NaN, 1.0 ); //ignore NaN
// returns 0.0

v = accumulator( 1.0, -5.0 );
// returns 1.0

v = accumulator( 3.0, 3.14 );
// returns ~0.965

v = accumulator( 3.0, NaN ); //ignore NaN
// returns ~0.965

v = accumulator();
// returns ~0.965
```

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- Input values are type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, then it will be Ignored but you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
- In comparison to the sample [Pearson product-moment correlation coefficient][pearson-correlation], the sample absolute [Pearson product-moment correlation coefficient][pearson-correlation] is useful when only concerned with the strength of the correlation and not the direction.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var incrnanapcorr = require( '@stdlib/stats/incr/nanapcorr' );

var accumulator;
var x;
var y;
var i;

// Initialize an accumulator:
accumulator = incrnanapcorr();

// For each simulated datum, update the sample absolute correlation coefficient...
for ( i = 0; i < 100; i++ ) {

x = (randu() < 0.2) ? NaN : randu() * 100.0; // 20% of the time, generate a NaN
y = (randu() < 0.1) ? NaN : randu() * 100.0; // 10% of the time, generate a NaN

ar = accumulator( x, y );
console.log( '%d\t%d\t%d', isnan(x) ? 'NaN' : x.toFixed( 4 ), isnan(y) ? 'NaN' : y.toFixed( 4 ), ar.toFixed( 4 ) );
}
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

* * *

## See Also

- <span class="package-name">[`@stdlib/stats/incr/mapcorr`][@stdlib/stats/incr/mapcorr]</span><span class="delimiter">: </span><span class="description">compute a moving sample absolute Pearson product-moment correlation coefficient incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/pcorr`][@stdlib/stats/incr/pcorr]</span><span class="delimiter">: </span><span class="description">compute a sample Pearson product-moment correlation coefficient.</span>
- <span class="package-name">[`@stdlib/stats/incr/pcorr2`][@stdlib/stats/incr/pcorr2]</span><span class="delimiter">: </span><span class="description">compute a squared sample Pearson product-moment correlation coefficient.</span>

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

[covariance]: https://en.wikipedia.org/wiki/Covariance

<!-- <related-links> -->

[@stdlib/stats/incr/mapcorr]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/mapcorr

[@stdlib/stats/incr/pcorr]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/pcorr

[@stdlib/stats/incr/pcorr2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/pcorr2

<!-- </related-links> -->

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var pkg = require( './../package.json' ).name;
var incrnanapcorr = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var f;
var i;
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
f = incrnanapcorr();
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
}
b.toc();
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanapcorr();

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( randu(), randu() );
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator,known_means', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanapcorr( 3.0, -2.0 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( randu(), randu() );
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading